编辑: 匕趟臃39 2019-03-04
To learn more about ON Semiconductor, please visit our website at www.

onsemi.com Is Now Part of ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor'

s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals must be validated for each customer application by customer'

s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class

3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. www.fairchildsemi.com ?

2011 飞兆半导体公司 www.fairchildsemi.com Rev. 1.0.1 ? 5/21/13 AN-9729 使用 100W 路灯照明的半桥 LLC 谐振转换器 LED 应用设计指南 简介 本应用指南介绍用于大功率 LED 照明应用(如户外 照明或路灯照明)的LED 驱动系统,该系统采用半 桥LLC 谐振转换器. 对于传统 PWM DC-DC 转换器 而言,采用非隔离型 DC-DC 转换器控制 LED 的电流 和光强会导致其功率转换效率降低. 而半桥 LLC 谐 振转换器不仅可以控制 LED 电流,而且可以大幅提 升功率转换效率. 此外,整个 LED 驱动系统的成本 和体积也得到了降低. 关于 LED 驱动 如今,LED 照明正在快速取代传统照明光源,如白炽 灯,荧光灯和卤素灯等,因为 LED 照明可降低功耗 . 相对传统照明光源,LED 照明寿命更长(约为荧 光灯和白炽灯的 5~20 倍),且不含毒性物质和有害 紫外线. 包括紧凑型荧光灯 CFL 在内的所有的卤素 灯和荧光灯几乎都含有有害元素汞. LED 的输出光强取决于流经 LED 电流的大小. LED 的特性决定所需电流大小所必需的正向电压. 根据 LED 电压与电流特性的关系,控制 LED 两端的正向 电压会导致不同的输出光强的大小. 因此,大多数 LED 驱动均通过调节电流来进行亮度控制, 改变 LED 电流的大小可直接控制亮度. 关于 LLC 谐振转换器 无源器件的尺寸限制了开关电源功率密度的不断增加 . 采取高频运行,可以大大降低无源器件,如变压 器和滤波器的尺寸. 但是过高的开关损耗势必成为 高频运行的一大障碍. 为了降低开关损耗和容许高 频运行,谐振开关技术已经得到了发展. 这些技术 采用正弦方式处理电力,开关器件能够实现软换流. 使得开关损耗与噪声大为降低[1-7] . 在各种类型的谐振转换器中,最简单和最普遍的谐振 转换器为 LC 串联谐振转换器,其中整流器-负载网络 与LC 谐振网络串联,如? 图1[2-4]所示. 在该电路结构 中,LC谐振网络与负载一起形成分压器. 通过改变驱 动电压Vd的频率,可以改变该谐振网络的阻抗. 输入 电压在谐振网络阻抗与反射负载之间进行分压. 由于 LC 串联谐振转换器等效于一个分压器,因此其直流增 益始终小于 1.在轻载条件下,相比谐振网络的阻抗 ,负载阻抗较大,这样,输入电压几乎全部施加在负 载上. 这使得轻载下很难调节输出. 在空载时,为 了能够调节输出,理论上谐振频率应该为无限大. 图1. 半桥LC串联谐振转换器 为了克服串联谐振变换器的限制,提出了 LLC 谐振 变换器[8-12] . LLC 谐振转换器为一种改进型 LC 串联 谐振转换器,区别是变压器初级绕组并联了一个电感 ,如? 图 2所示. 采用并联电感可以增加初级绕组的 环流,有利于电路运行. 由于这个概念不直观,在 该拓扑首次提出时没有受到足够的重视. 但是,对 于高输入电压的应用场合,与导通损耗相比,变换器 的开关损耗占主导地位,此时该谐振变换器在提升效 率方面就显得十分突出. 在多数实际设计中,该分流电感往往通过变压器励磁 电感来实现. LLC谐振转换器的电路图与LC串联谐振 转换器的电路图十分相似. 唯一的差别在于:励磁 电感的取值不同. LLC 谐振转换器的励磁电感远远 大于 LC 串联谐振转换器的励磁电感 (Lr),LLC 谐 振转换器中的励磁电感为 Lr的3~8 倍,通常通过在 变压器中设置气隙来实现. AN-9729 应用指南 ?

下载(注:源文件不在本站服务器,都将跳转到源网站下载)
备用下载
发帖评论
相关话题
发布一个新话题