

操作说明书 电控气动定位器 ARCAPRO® - 不带/带 HART 通信的规 格 827A. E/X 系列

目录

1	一般说明	5
1.1	本说明书的有效性	5
1.2	联系方式	5
1.3	随附的文件	5
1.4	本说明书的存放地点	5
2	安全	6
2.1	前言	6
2.2	一般安全信息	6
2.3	符号和提示说明	6
2.4	设备上的警告符号	7
2.5	按照规定使用	7
2.6	设备的不当改装	7
2.7	具备资质的人员	7
2.8	免责声明	8
2.9	法规和规定	8
2.10	符合欧洲指令	8
2.11	在有爆炸危险的区域内使用	8
3	运输、存放和包装	10
3. 1	运输	10
3. 2	存放	10
3. 3	包装	10
4	铭牌	11
5	型号代码	12
6	说明	14
6. 1	功能	14
6. 2	结构	14
6. 3	设备组件	16
6. 3. 1	主板	16
6. 3. 2	电气接口	16
6. 3. 3	气动接口	17
6. 3. 4	扫气转换开关	18
6. 3. 5	节流阀	19
7	安装	20
7. 1	有关安装的安全提示	20
7. 2	线性执行机构的安装	20
7. 2. 1	"线性执行机构内置安装"安装套件的安装	20
7. 2. 2	安装套件"线性执行机构 IEC 534"的安装	22
7. 3	安装套件"旋转执行机构 VDI/VDE 3845"的安装	26
7. 4	在潮湿环境下使用定位器	29

7. 5	遭受强加速度或振动的定位器	30
7. 5. 1	摩擦离合器	31
7. 5. 2	传动比开关	31
8	电气连接	33
8. 1	基本设备的电气连接	35
8.2	选件的电气连接	37
8.3	插头 M12 的可选规格	41
9	气动连接	42
10	调试	43
10.1	线性执行机构的调试准备	44
10.1.1	线性执行机构的自动初始化	45
10.1.2	线性执行机构的手动初始化	46
10.2	旋转执行机构的调试准备	48
10. 2. 1	旋转执行机构的自动初始化	49
10. 2. 2	旋转执行机构的手动初始化	50
10.3	复制初始化数据(定位器更换)	51
11	参数概述	52
11.1	参数 1 至 5	52
11.2	参数 6 至 52	52
11.3	参数 A 至 P	55
12	维修和维护	58
13	技术数据	60
14	故障排除	65
15	废弃处理和回收利用	68

ARCA Regler GmbH 1 一般说明

1 一般说明

本操作说明书包含有关安全且专业地安装、运行以及维护本产品的说明。 本操作说明书的目标人群仅面向受过专业培训且经授权的专业人员。 遇到借助本操作说明书无法解决的问题时,请联系制造商。 保留随时对本产品进行技术更改的权利。

1.1 本说明书的有效性

本操作说明书适用于符合设备标签中所述规格的产品。

1.2 联系方式

有关产品的详细信息,请通过以下方式获取:

制造商地址

ARCA Regler GmbH Kempener Str. 18 D-47918 Tönisvorst 电话: +49 (0) 2156-7709-0 传真: +49 (0) 2156-7709-55 电子邮箱: sale@arca-valve.com www.arca-valve.com

1.3 随附的文件

本产品可作为调节器的组成部分供货,并且装备有独立操作说明书中所述的附加组件。还需注意其中所含的说明以及警告和安全提示。

此外,本操作说明书还包含以下文件:

- 设备标签
- 安装图纸

1.4 本说明书的存放地点

本操作说明书以及随附的所有文件均为产品的组成部分,必须将其存放在产品附近,以供人员随时取阅。

2 安全

2.1 前言

本说明书包含了连接和调试该设备所需的所有信息。

本说明书面向的是负责对该设备进行机械安装、电气连接、参数设置和运行的人员,以及服务技术人员和维护技术人员。

本说明书适用于固件版本为 5.00.00 及以上的非本安型和本安型设备。

对此指出,本设备手册的内容不是任何先前或现有的协议、承诺或法律关系的一部分,也不得对其修改。各购买合同包含我们应承担的全部义务以及完整的、但单独适用的保修规定。本文件中有关设备规格的任何说明都不会扩展或限制合同中规定的保修条款。

本文件的内容反映了出版时的技术状态。

我们保留在进一步的开发过程中进行技术更改的权利。

▲ 警告

使用已损坏或不完整的设备

存在爆炸危险!

▶ 请勿使用已损坏或不完整的设备。

2.2 一般安全信息

安全使用的前提条件

本设备出厂时处于安全技术完好的状态。为了保持这种状态并确保设备安全运行,请遵守本说明书以及所有安全相关的信息。

请注意设备上的提示和符号。请不要移除设备上的提示和符号。请保持这些提示和符号始终处于完整可读状态。

2.3 符号和提示说明

本文件包含为了确保您的人身安全以及避免造成财产损失而必须遵守的提示。涉及人员安全的提示均用一个警告三角进行了强调,仅与财产损失有关的提示不带警告三角。根据危险等级,按照降序对警告提示进行了如下说明。

▲ 危险

表示如果不采取适当的预防措施,则会造成死亡或严重的人身伤害。

⚠ 警告

表示如果不采取适当的预防措施, 则可能会造成死亡或严重的人身伤 害。

▲ 小心

带警告三角表示,如果不采取适当的预防措施,可能会造成轻微的人身伤害。

ARCA Regler GmbH 2 安全

提示

有关产品自身、产品操作的重要信息,应特别注意。

小小

不带警告三角表示,如果不采取适当的预防措施,可能会造成财产损失。

注意

表示若未注意相关提示,可能会发生不希望的结果或状况。

出现多个危险等级时,始终使用最高等级的警告提示。如果在某个警告提示中带有警告可能造成人身伤害的警告三角,那么在此警告提示中可能还额外附有可能导致财产损失的警告。

2.4 设备上的警告符号

符号

设备上警告符号的说明

注意操作说明书

防止碰撞设备(否则无法确保达到保护等级)

2.5 按照规定使用

请注意以下说明:

▲ 警告

ARCA 定位器只允许用于所属技术文件中规定的使用情况。根据实际情况正确进行运输、存放、组装、安装、装配、调试、操作和维修,是确保产品正常且安全运行的前提条件。必须遵守允许的环境条件。必须注意所属文件中的提示。

2.6 设备的不当改装

⚠ 警告

改装设备

对设备进行改装和修理,尤其是在具有爆炸危险的区域内进行,会对人员、设备和环境造成危险!

► 只能按照设备说明书中的说明改装或修理设备。若未遵守此规定,制造商的质量保证以及产品许可证将会失效。

2.7 具备资质的人员

只允许结合本文件调整和操作该设备。设备的投入使用和操作,只允许由 **具备资质的人员** 进行。本文件安全技术相关提示中规定的具备资质的人 员是指,有权按照安全技术标准对设备、系统和电路进行运行、接地和标 记的人员。

具备资质的人员必须熟知如何组装、安装、投入使用和操作本产品。上述 人员必须具备以下资质:

- 有权按照电路、高压、腐蚀性和危险性介质的相关安全技术标准操作 与维护设备和系统,或者是接受过这方面的培训或指导。
- 对于具有防爆功能的设备:有权对具有爆炸危险设备的电路进行操作,或者是接受过相关的培训或指导。
- 接受过有关根据安全技术标准保养和使用合适安全装备的培训或指导。

2.8 免责声明

我们已经对本说明书的内容与所述硬件和软件的一致性进行了检查。但是 仍可能存在偏差,因此我们不能保证完全一致。我们会定期对这些说明进 行检查,所需的修正内容会包含在后续版本中。

2.9 法规和规定

连接、安装和运行时,必须遵守所在国家适用的测试认证、规定和法规。 其包括例如:

- IEC 60079-14 (国际)
- EN 60079-14 (EG)
- 运行可靠性规定

2.10 符合欧洲指令

设备上的 CE 标志表示符合以下欧洲指令:

2014/30/EU EMC	欧洲议会和理事会就统一各成员国有关电磁兼容性 的相关法律规定而颁布的指令。
2014/34/EU ATEX	欧洲议会和理事会就统一各成员国在潜在爆炸性区域内使用设备和保护系统的相关法律规定而颁布的指令。
2014/35/EU LVD	欧洲议会和理事会就统一各成员国有关在一定电压 范围内使用的电气设备的相关法律规定而颁布的指令。

应用的标准,请查看设备的 EU 一致性声明。

2.11 在有爆炸危险的区域内使用

⚠ 警告

不宜在有爆炸危险区域使用的设备

存在爆炸危险!

- ▶ 请只使用允许在有爆炸危险区域内使用且具有相应标记的设备。
- ▶ 请确保,此设备适合用于此使用范围。

ARCA Regler GmbH 2 安全

⚠ 警告

丧失本安型 "Ex i" 防爆设备的安全性

若已将此设备连接到非本安电路或在较高的工作电压下运行此设备,则无法继续确保在有爆炸危险区域内使用该设备的安全性。存在爆炸危险!

- ▶ 请仅将本安型的防爆设备连接到本安电路中。
- ▶ 请注意合格证中的电气数据说明。

▲ 警告

不允许使用的附件和备件

在具有爆炸危险的区域内存在爆炸危险或设备损坏!

- ▶ 请仅使用原装附件和原装备件。
- ▶ 请注意设备、附件和备件说明书中所有相关的安装提示和安全提示。

⚠ 警告

电缆引入口裸露或电缆接头错误

在具有爆炸危险的区域内存在爆炸危险或设备损坏!

► 请封闭用于进行电气连接的电缆引入口。为此,请仅使用允许用于相 关防爆类型的电缆接头或堵头。

⚠ 警告

超出了最高环境温度或介质温度

在具有爆炸危险的区域内存在爆炸危险!

若超出了允许的最高环境温度或介质温度,设备的温度等级则会失效!

▶ 请确保,不超过设备允许的最高环境温度或介质温度。

⚠ 警告

铭牌静电荷

设备上使用的铭牌蓄电量可达 5 pF。

▶ 请确保设备和电缆远离强电磁场。

▲ 小心

静电敏感型组件

此设备含有静电敏感型组件。远低于人体感官极限的电压,仍可能毁坏静电敏感型组件。若未进行静电放电,接触某个组件或组件的电气接口,就会产生这类电压。由于超压对组件造成的损坏通常无法立即检测出来,而是要运行较长时间后才能发现。

▶ 因此,请防止产生静电。

3 运输、存放和包装 ARCA Regler GmbH

3 运输、存放和包装

3.1 运输

不允许在低于 -40° C 或高于 +80° C 的温度下进行运输。

3.2 存放

提示

存放不正确!

若存放不正确,则存在造成产品失灵的危险。

- ► 不允许存放在低于 -40° C 或高于 +80° C 的温度下。
- ▶ 必须存放在已封顶且不受天气影响的存放位置。

为防止污染,已采用适当方式封堵开口。应在到达安装地点后,才由专业 人员移除封堵件。

▲ 小心

存放期间保护不足

包装只能提供有限的防潮和防渗透保护!

▶ 必要时,请进行额外的包装。

3.3 包装

本产品在其外包装(纸箱、木箱、托盘、周转箱)中已使用 PE 膜进行包装。

若要打开包装,尤其是 PE 膜,则必须将本产品立即存放到一个已加热处理过的房间内。

通过船舶、火车或卡车运输本产品时,本产品包装必须抗风雨以及抗海况。

ARCA Regler GmbH 4 铭牌

4 铭牌

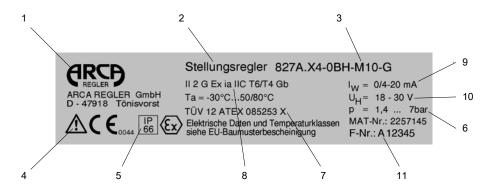


图 1: 827A 铭牌

1	制造商
2	设备名称
3	型号
4	注意操作说明书
5	防护等级
6	辅助能源(进气)
7	认证
8	具有爆炸危险区域的 ATEX 标识
9	标称信号范围
10	辅助能源(电压)
11	工厂编号

5 型号代码 ARCA Regler GmbH

5 型号代码

827A.	E	2	_	A	0	Н	_	M	1	0	-	G	_	LT
[1]	[2]	[3]	-	[4]	[5]	[6]	-	[7]	[8]	[9]	-	[10	-	[11

1. 系列

827A.

2. 防爆 1)

E不防爆

X 防爆"ia" 1) 2)

3. 基本设备接口

2 线制

4 2/3/4 线制 3)

4. 模拟输出端

0 无模拟输出端

A模拟模块

5. 二进制输出端

7 无二进制输出端

B二进制模块

S 槽口启动器模块

K 触点模块

6. 通信

0 无通信

H HART

P PROFIBUS PA

F 基础现场总线

7. 外壳材料

M 铝(仅单作用式)

E不锈钢

8. 气动装置

1 单作用式

双作用式(除了铝制外壳)

9. 机械式执行机构

0 标准

2 无 (针对外部电位计)

10. 电气/气动连接螺纹

G M20x1.5 / G 1/4

N 1/2 " NPT / 1/4 " NPT

M20x1.5 / 1/4 " NPT

P 1/2 " NPT / G ¼

Q M25x1.5 / 1/4 " NPT (χ Ex d)

R 用于输入信号 / G 1/4 的插头 M12

ARCA Regler GmbH 5 型号代码

S	用于输入信号 / 1/4 " NPT 的插头 M12
11. 选件	
FIP	原地失败 (Fail-in-place) 4)
LT	- 40 ° C ⁴)
SA	用于模拟模块的插头 M12
SB	用于二进制模块的插头 M12
SS	用于槽口启动器模块的插头 M12
SW	用于外部位移传感器的插头 M12

- 1) ATEX 认证,按需求提供其它认证
- 2) 仅 2/3/4 线制支持 HART 通信
- 3) 除了 PROFIBUS PA 和基础现场总线
- 4) 根据需求

型号名称示例

827A. E2-A0H-M10-G-LT

10. 电气/气动连接螺纹

定位器 827A - 无防爆功能 - 2 线制接口 - 模拟模块 - 无二进制输出端 - HART 通信,铝制外壳 - 单作用式 - 标准机械式执行机构 - 电气连接螺纹 M20x1.5 / 气动连接螺纹 G 1/4 / - 40 ° C

6 说明 ARCA Regler GmbH

6 说明

6.1 功能

 电控气动定位器与执行机构组合,构成了一个调节系统。由一个伺服 电位计检测出执行机构的当前位置,并返回实际值 x。在数字显示屏 上将同时显示输出的额定值和实际值。

- 额定值 w 形成为定位器供电的电流,在两线制模式下此电流也用于为 定位器供电。在 3 线制和 4 线制模式下,通过 24 V 电压输入端供 电。
- 此定位器作为可预测的(具有前瞻性的)五点控制器进行工作,借助 其输出参数 ± Δ y 可通过脉冲长度调制控制内置的调节阀。
- 这些调节信号会导致执行机构室内的压力发生变化,从而导致执行机构发生移动,直至控制偏差为零。
- 取下外壳保护盖后,可通过三个按键和一个数字显示屏进行操作(手动模式)和配置(结构化、初始化和参数设置)。
- 标准情况下,此基本设备具有一个二进制输入端(BE1)。此二进制输入端可单独进行配置,例如可用于锁定操作层。
- 定位器配有一个摩擦离合器和一个可切换变速器,以便能够与多数机械结构不同的旋转和线性执行机构配合使用。

6.2 结构

本章对定位器的机械和电气结构、设备组件和工作原理进行了说明。 此定位器用于调整和控制气动执行机构。此定位器采用电控气动方式进行 工作,使用压缩空气作为辅助能源。

通过此定位器可对例如装有以下装置的阀门进行控制:

- 线性执行机构(图 2)或
- 旋转执行机构 VDI/VDE 3845 (图 3)

针对线性执行机构提供有不同的加装方式。

- NAMUR 或 IEC 534
- 内置安装 (ARCA, SAMSON)
- 根据 VDI/VDE 3847 内置安装

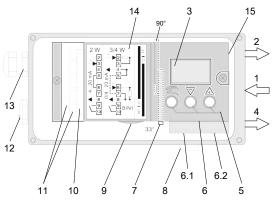
此定位器可安装在所有常规的执行机构上进行运行。

ARCA Regler GmbH 6 说明

此设备适用于单作用式和双作用式执行机构以及存在爆炸危险或不存在爆炸危险的应用情况。

- 1 执行机构
- 2 定位器,单作用式,安装在金属外 壳中
- 3 阀门支架
- 4 压力表模块,单作用式
- 5 阀门

图 2: 安装到线性执行机构(单作用式)的定位器



- 1 定位器,双作用式,安装在不锈钢 外壳中
- 2 旋转执行机构
- 3 压力表模块,双作用式

图 3: 安装到旋转执行机构(双作用式)的定位器

6 说明 ARCA Regler GmbH

6.3 设备组件

进气入口 出口:调节压力 Y1 显示屏 出口:调节压力 Y2 *) 5 操作键 6 节流阀 Y1 6.1 节流阀 Y1 *) 6.2 节流阀 Y2 *) 传动比开关 降噪器 摩擦离合器调节轮 10 基本设备接线端子 选配模块 接线端子 12 盲塞 13 电缆接头 14 盖板上的接线图 15 扫气转换开关 为双作用式设备时

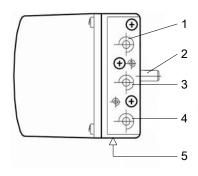
图 4: 结构

6.3.1 主板

主板上有:

- CPU
- 存储器
- A/D 转换器
- 显示屏
- 操作键
- 用于连接主板上选配模块的连接板。

6.3.2 电气接口


基本设备、模拟模块、二进制模块和槽口启动器模块的接线端子位于左前缘,并且相互呈阶梯形安装。

组件盖板可防止组件被拔出,并可防止安装错误。

ARCA Regler GmbH 6 说明

6.3.3 气动接口

气动接口位于定位器的右侧。

- 1 单作用式和双作用式执行机构的调 节压力 Y1
- 2 反馈轴
- 3 进气 P_z
- 4 双作用式执行机构 的调节压力 Y2
- 5 设备底部带 降噪器 的排气出口 E

图 5: 气动接口

连接样式

针对单作用式线性执行机构的内置安装,在定位器的背面有以下气动接口:

- 调节压力 Y1
- 排气出口 E

除了内置 ARCA 安装件的情况之外,还通过螺丝封住了这些接口。 排气出口可用于借助干燥的仪表空气密封测量室以及弹簧室,以防腐蚀。 图 6 显示了适用于不同执行机构类型的气动连接样式、调节作用和辅助 能源失灵后的安全位置。

▲ 小心

操作调节阀之前需注意

操作调节阀之前,必须将其移至安全位置。请确定,调节阀已到达安全位置。如果只是中断定位器的辅助气源,则可能需要等待一段时间后才能到达安全位置。

6 说明 ARCA Regler GmbH

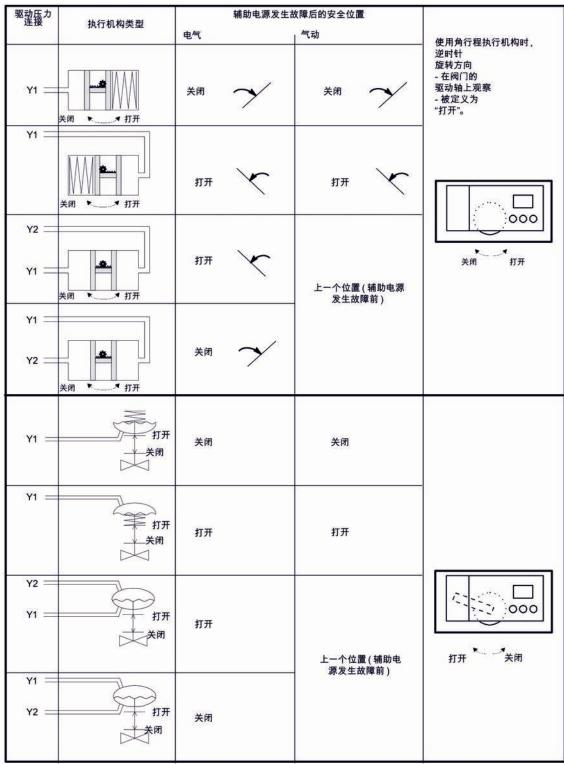
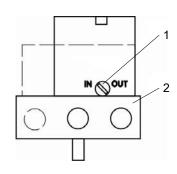


图 6: 气动接口调节作用


6.3.4 扫气转换开关

外壳打开时,可从阀组气动连接板的上方触及扫气转换开关。

• 在 IN 位置,可使用极少量的洁净且干燥的仪表空气冲洗外壳内部。

ARCA Regler GmbH 6 说明

• 在 OUT 位置,可直接向外排出扫气。

1 扫气转换开关

2 气动连接板

图 7: 阀组上的扫气转换开关

6.3.5 节流阀

在无电流状态下,排气阀始终处于打开状态。

- 在小型执行机构上,为了达到 > 1.5 秒的调节时间,可通过节流阀 Y1 和 Y2 降低空气输出量。
- 顺时针转动节流阀,可减少空气输出量,直至切断。
- 调节节流阀时,建议先关闭节流阀,然后再缓慢打开(参见初始化 RUN3)。
- 使用双作用式执行机构时请注意,要确保两个节流阀的设置大致相同。

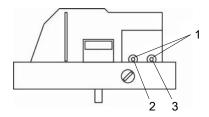


图 8: 节流阀

- 1 内六角 2.5 mm
- 2 Y1
- 3 Y2

7 安装

7.1 有关安装的安全提示

小心

安装不正确

安装不正确可能会损坏、毁坏设备或影响其功能性。

请在每次安装设备之前,确保设备不存在明显损坏。 请确保过程接口洁净,并使用了适当的密封件和电缆接头。

请使用适当的工具安装此设备。

企业

机械冲击作用

为了避免人员受伤或造成定位器/安装套件机械损坏,安装时务必遵守以下顺序:

- ▶ 机械安装定位器
- ▶ 连接辅助电源
- ▶ 连接辅助气源
- ▶ 进行调试

注意

失去设备防护等级

如果外壳打开或关闭不当,则会造成设备损坏。铭牌上给出的设备防护等级则无法再得到保证。

企业

潮湿的环境/干燥的压缩空气

如果将定位器安装在潮湿的环境中,定位器的轴不应在环境温度较低时冻结。

请确保,水不会渗进打开的外壳或打开的螺纹套管接头中。若未立即在现场最终安装和连接此定位器,则可能会有水渗入。

通常情况下,只允许使用干燥的压缩空气运行此定位器。因此,请使用通用的水分离器。在极端情况下,还需额外使用一个干燥设备。在较低的环境温度下运行定位器时,使用干燥设备尤为重要。在气动接口上方的阀组上进行安装时,请将扫气转换开关调至"OUT"位置。

7.2 线性执行机构的安装

7.2.1 "线性执行机构内置安装"安装套件的安装

"线性执行机构内置安装"安装套件包含在供货范围内(序列号参见下图):

序列号	件数	名称	提示
1	1	带滑轮的全套传动销	装在操作杆(2)上
2	1	操作杆	
3	2	U 形垫片	B6.4 - DIN 125 - A2
4	1	弹簧垫圈	A6 - DIN 137A- A2
5	1	弹簧环	A6 - DIN 127- A2

ARCA Regler GmbH 7 安装

6	1	柱头螺丝	M6 x 25 DIN 7984 - A2
7	1	六角螺母	M6 - DIN 934 - A4
8	1	四角螺母	M6 - DIN 557 - A4
9	2	柱头螺丝	M8 x 65 - DIN 912 - A2
10	2	弹簧环	A8 - DIN 127 - A2
11	2	封闭螺丝	
12	1	0 型环	13 x 2.5

安装流程(见下图)

- 1. 图 9: 将预先安装好的操作杆上的销(1)设置为执行机构上给出的行程范围值,或者如果没有可作为刻度值的范围值,则需设置下一个更高的刻度值。若不确定实际的执行机构行程(气动式伺服执行机构通常具有一个备用调节行程),原则上应选择下一个更高的刻度值。销中心必须位于操作杆上的刻度线上。若要在初始化后以 mm 为单位显示调节行程,可在以后进行调试时在参数"3.YWAY"下设置相同值。
- 2. 图 10: 将操作杆推至定位器轴上的限位挡块处,并使用柱头螺丝(6)进行固定。
- 3. 通过移除螺丝(13)和0型环(14)可打开背面的调节压力输出端。
- 4. 若在弹簧室内装有排气密封系统,则通过移除螺丝(16)和 0 型环(15)可打开背面的排气出口。
- 5. 图 11: 使用封闭螺丝(11)密封调节压力输出端。若装有排气密封系统,则移除排气降噪器并进行密封。
- 6. 将 0 型环(12)装入阀门支架的沉孔中。
- 7. 将定位器固定在执行机构上,使得滑轮在销(17)之间穿过。
- 8. 将定位器水平对准阀门支架,并用螺丝(9)和弹簧环(10)进行安装。

内置安装的安装流程图

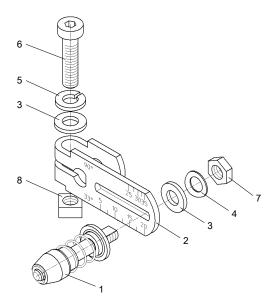


图 9: 安装操作杆

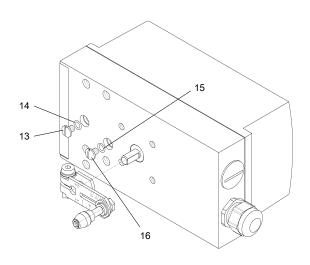


图 10: 定位器上操作杆的安装

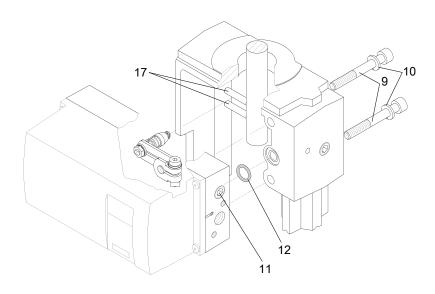


图 11: 执行机构上定位器的安装

7.2.2 安装套件"线性执行机构 IEC 534"的安装

在供货范围内包含"线性执行机构 IEC 534" (行程为 3 ··· 35 mm) 安装套件(序列号参见下图):

序列 号	件数	名称	提示
1	1	NAMUR 安装角架 IEC 534	标准化的连接位置,用于带肋 条、支柱或平面的安装支架
2	1	U 型卡规	通过传动销引导滑轮并旋转杆臂
3	2	夹紧件	在执行机构阀杆上安装 U 型卡规
4	1	带滑轮的全套传动销	装在操作杆(5)上
5	1	操作杆 NAMUR	适用的行程范围为 3 mm 到 35 mm 或 (若行程范围 > 35 ··· 130 mm,则需单独订购,参见图 10)
6	2	U 型螺栓	仅适用于带支柱的执行机构

ARCA Regler GmbH 7 安装

7	4	六角螺丝	M8 x 20 DIN 933 - A2
8	2	六角螺丝	M8 x 16 DIN 933 - A2
9	6	弹簧环	A8 - DIN 127 - A2
10	6	U 形垫片	B 8.4 - DIN 125 - A2
11	2	U 形垫片	B 6.4 - DIN 125 - A2
12	1	弹簧垫圈	A6 - DIN 137A - A2
13	3	弹簧环	A6 - DIN 127 - A2
14	3	柱头螺丝	M6 x 25 DIN 7984 - A2
15	1	六角螺母	M6 - DIN 934 - A4
16	1	四角螺母	M6 - DIN 557 - A4
17	4	六角螺母	M8 - DIN 934 - A4

安装流程(见下图)

- 1. 图 13: 使用六角螺丝(14)和弹簧环(13)将夹紧件(3)安装到执行机构轴杆上。
- 2. 将 U 型卡规 (2) 推入夹紧件的凹槽中。设置所需的长度并拧紧螺 丝, 但要确保 U 型卡规仍可以移动。
- 3. 图 14: 将预先安装好的操作杆上的销(4)设置为执行机构上给出的行程范围值,或者如果没有可作为刻度值的范围值,则需设置下一个更高的刻度值。若不确定实际的执行机构行程(气动式伺服执行机构通常具有一个备用调节行程),原则上应选择下一个更高的刻度值。销中心必须位于操作杆上的刻度线上。若要在初始化后以 mm 为单位显示调节行程,可在以后进行调试时在参数"3.YWAY"下设置相同值。
- 4. 将操作杆推至定位器轴上的限位挡块处,并使用柱头螺丝(14)进行固定。
- 5. 图 15: 使用两个六角螺丝(8)、弹簧环(9)和 U 形垫片(10)将安装角架(1)安装到定位器的背面。孔行的选择取决于执行机构的阀门支架宽度。在此应使滑轮与 U 型卡规(2)尽量在阀杆附近啮合,但是不得接触到夹紧件。
- 6. 图 16: 使用固定角架将定位器固定到执行机构上,使得销(4) 在 U型卡规(2)内部穿过。
- 7. 拧紧 U 型卡规。
- 8. 根据执行机构类型准备安装件:
 - 带肋条的执行机构: 六角螺丝 (7)、垫圈 (10) 和弹簧环 (9)。
 - 图 17: 带平面的执行机构: 四颗六角螺丝(7)及垫圈(10)和弹簧环(9)。
 - 图 18: 带支柱的执行机构: 两颗 U 型螺栓 (6)、四颗六角螺丝 (17) 及垫圈 (10) 和弹簧环 (9)。
- 9. 使用预先准备好的安装件将定位器固定到阀门支架上。调节定位器的高度,使操作杆的水平位置尽量靠近行程中心。在此,可通过执行机构的行程刻度尺自行定位。任何情况下都必须确保,操作杆的水平位置在行程范围内。

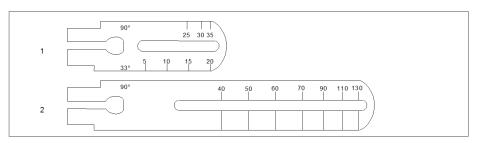


图 12: 操作杆 NAMUR 3 mm 至 35 mm (1), 操作杆 NAMUR > 35 mm 至 130 mm (2)

线性执行机构的安装流程 IEC

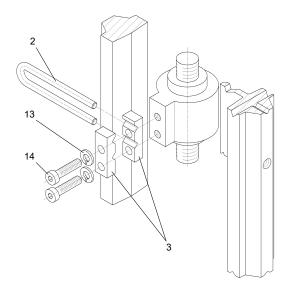


图 13: 执行机构轴杆上定位器连接件的安装

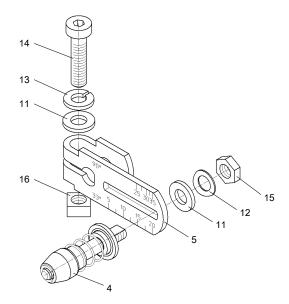


图 14: 安装操作杆

ARCA Regler GmbH 7 安装

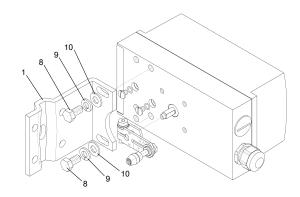


图 15: NAMUR 安装角架的安装

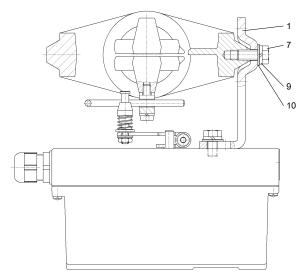


图 16: 带肋条的执行机构上定位器的安装

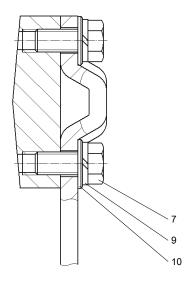


图 17: 带平面的执行机构上定位器的安装

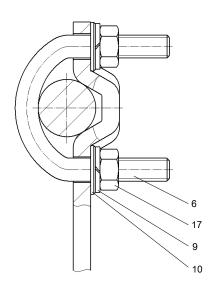


图 18: 带支柱的执行机构上定位器的安装

7.3 安装套件"旋转执行机构 VDI/VDE 3845"的安装

"旋转执行机构 VDI/VDE 3845"安装套件包含在供货范围内(序列号参见下图):

序列号	件数	名称	提示
2	1	耦合轮	在定位器的轴上安装
3	1	传动销	安装在执行机构的轴末端
4	1	多倍标签	显示执行机构位置,由:4.1 和 4.2 组成
4. 1	8	刻度尺	不同刻度
4.2	1	指针标志	刻度的基准点
14	4	六角螺丝	DIN 933 - M6 x 12
15	4	保险垫片	S6
16	1	柱头螺丝	DIN 84 - M6 x 12
17	1	垫片	DIN 125 - 6.4
18	1	内六角螺丝	与离合轮一起预先安装
19	1	内六角扳手	适用于位置 18

安装流程(见下图)

- 1. 图 19: 将 VDI/VDE 3845 安装支架((9), 执行机构特定, 执行机构制造商供货范围)放置在定位器的背面,并用六角螺丝(14)和保险垫片(15)将其固定。
- 2. 将指针标志(4.2)贴到安装支架上,使其位于定位孔中心。
- 3. 图 20: 将耦合轮(2) 推到定位器轴上的限位挡块处,然后将其拉回约 1 mm,并使用随供的内六角扳手拧紧内六角螺丝(18)。
- 4. 图 21: 将传动销(3)放到执行机构的轴末端上,并用柱头螺丝(16)和垫圈(17)将其固定。
- 5. 图 22: 请小心地将带安装支架的定位器放到执行机构上。进行此操作时,耦合轮(2)的两颗销必须位于传动销(3)中。如果按照如下说明使用销(12),则无需调整摩擦离合器。由此可简化调试过程。在这

ARCA Regler GmbH 7 安装

两个销(20)上各有一个凹槽,参见下图。对于顺时针关闭的执行机构,请使用凹槽为 V 型(B)的销。对于顺时针打开的执行机构,请使用凹槽为矩形(A)的销。

- 6. 使定位器/安装支架单元在执行机构上居中对准,并用螺丝将其拧紧(螺丝不包含在供货范围内,但是执行机构安装支架的一部分)。
- 7. 图 23: 调试结束后,将执行机构移动至终端位置,并根据旋转方向或 旋转范围将刻度尺(4.1) 粘贴在耦合轮(2)上。此刻度尺是自粘 的。

旋转执行机构的安装流程 VDI/ VDE 3845

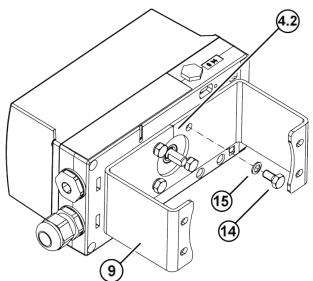
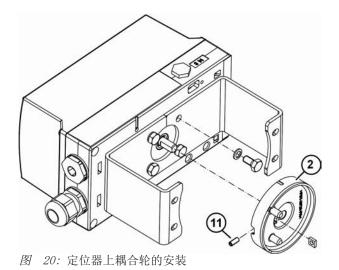



图 19: 支架上定位器的安装

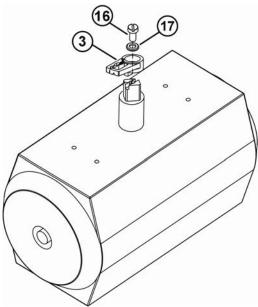
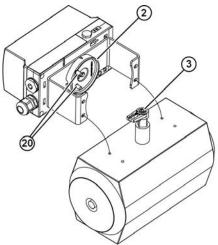
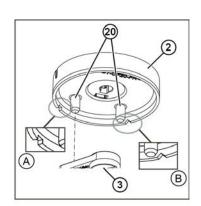




图 21: 执行机构上传动销的安装

ARCA Regler GmbH 7 安装

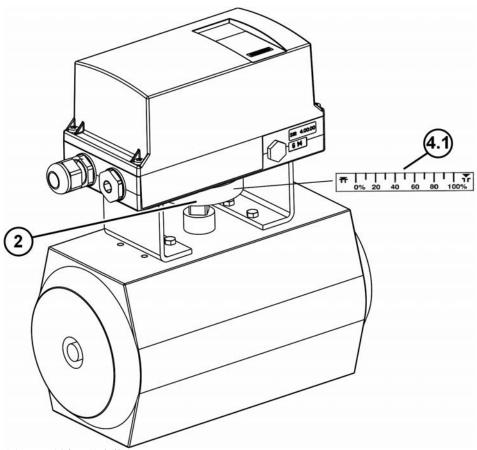
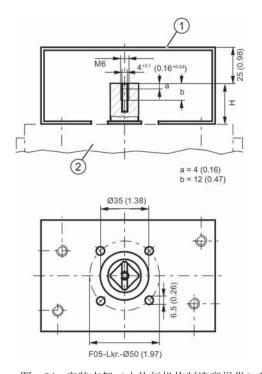



图 23: 刻度尺的安装

1 定位器 固定面

2 旋转执行机构

图 24: 安装支架(由执行机构制造商提供)和尺寸

7.4 在潮湿环境下使用定位器

小心

请不要使用高压清洁设备清洁定位器,因为保护等级 IP66 不足以承受 这样的高压。

此信息给出了有关在潮湿环境下(频繁强降雨或/和持续较长时间的热带凝露)安装和运行定位器的重要提示,在潮湿的环境下将无法继续达到保护等级 IP66,尤其是存在水可能结冰的危险时。

请避免不利的安装位置:

- 防止正常运行时液体进入设备中,例如通过排气口。
- 否则数字显示屏将难以读取。

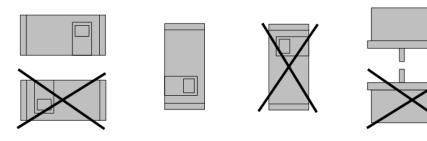


图 25: 有利和不利的安装位置

如果受实际条件约束,只能在不利的安装位置运行定位器,则可采取附加措施防止进水。

附加措施

防止进水所需的附加措施取决于所选的安装位置,您可能还需要使用:

- 帯密封环的螺纹套管接头(例如 FESTO: CK -¼ -PK-6)
- 约 20 ··· 30 cm 长的塑料软管 (例如 FESTO: PUN- 8x1.25 SW)
- 电缆扎带(数量和长度取决于当地的实际情况)

操作步骤

- 1. 安装管路,使顺管道流动的雨水或冷凝水能够在到达定位器的连接板之前滴干。
- 2. 检查电气接口的密封件是否正确就位。
- 3. 检查外壳保护盖中的密封件是否存在损坏情况和污物。如有需要可进 行清洁或更换。
- 4. 如有可能,安装定位器,使安装在外壳底部的烧结青铜降噪器朝下 (垂直安装位置)。如果无法这样做,应使用一个适当的带塑料软管 的螺纹套管接头代替降噪器。

带塑料软管的螺纹套管接头的安 装

- 1. 从外壳下侧的排气口中旋出烧结青铜降噪器。
- 2. 将上文提到的螺纹套管接头拧入排气口中。
- 3. 将上文提到的塑料软管安装到螺纹套管接头上,并检查安装是否牢固。
- 4. 使用电缆扎带将塑料软管固定在阀门上,使其开口朝下。
- 5. 检查软管是否无扭结以及排气是否可以顺畅地排出。

7.5 遭受强加速度或振动的定位器

强劲的加速力(其可能远远超出了特定的数据范围)会发生在受到强机械 负载(例如分离阀、剧烈振荡或振动的阀门以及"蒸汽冲击"情况)的阀 门上。在极端情况下,这可能会导致摩擦离合器移动。

针对这些情况,定位器按照标准装配了适用于摩擦离合器和传动比开关的锁定装置,通过其可防止发生因上述影响所造成的移动。

ARCA Regler GmbH 7 安装

摩擦离合器的锁定装置可接近摩擦离合器黑色调节轮的下方,并且可在带槽的黄色滑轮上识别出来。在一个附加标签上,通过符号标记出了摩擦离合器的零点位移和可调性。

传动比开关的锁定装置位于端子的下方,并且也装配了一个带槽的黄色调节轮。

7.5.1 摩擦离合器

操作步骤

定位器已安装好并完全投入运行之后,可按照如下操作锁定摩擦离合器:

- 1. 将商业上通用的、约 4 mm 宽的螺丝刀插入黄色调节轮的一个槽中。
- 2. 使用螺丝刀向左调整黄色轮,直至可感觉到其卡入为止。由此可锁定摩擦离合器。
- 3. 已锁定的摩擦离合器,可以通过在黄色轮和黑色轮之间约 1 mm 宽的 间隙来识别。
- 4. 如果需要在例如更换执行机构之后设置零点,则可通过向右旋转直至 黄色轮到达限位挡块处解除锁定。设置完零点之后,可按照上述说明 重新固定摩擦离合器。

7.5.2 传动比开关

从空档位置(供货状态)出发,可按照如下说明锁定传动比开关:

- 1. 将商业上通用的、约 4 mm 宽的螺丝刀插入黄色调节轮的一个槽中。
- 2. 根据所选的变速器档位(33° 或 90°)向左或向右旋转调节轮,直至可感觉到其卡入为止。
- 3. 已锁定的传动比开关,必须在不对称的调节轮上识别出来。
- 4. 如果需要给变速器换档,则必须先将调节轮旋转到空档位置解除锁定。

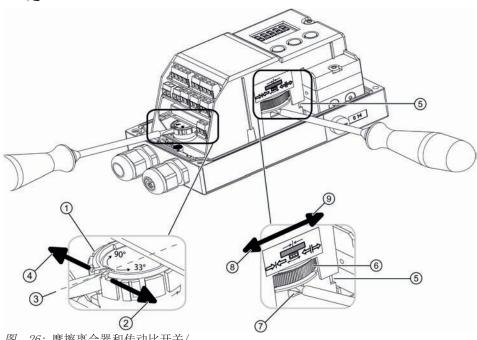


图 26: 摩擦离合器和传动比开关/固定装置的锁定

1	调节轮	2	33° 固定
3	空档位置	4	90° 固定
5	传动比开关	6	摩擦离合器调节轮
7	摩擦离合器固定轮	8	已锁定

9 松开

外部行程检测系统

如果上述措施无法满足某些使用情况(例如:连续的强震动、较高或过低的环境温度以及核辐射),可能需要使用外部行程检测系统。在此,需要安装从阀门上卸下的特殊定位器(参见型号代码)。(相关的详细信息,包含在设备手册 827 EDP 的补充说明中)。

ARCA Regler GmbH 8 电气连接

8 电气连接

基本安全提示

警告

电源不合适

因电源不合适,例如使用交流电而不是直流电,在有爆炸危险的区域内则存在爆炸危险。

► 请根据规定的电源电路和信号电路连接此设备。相关规定,请查看合格证或铭牌上的说明。

⚠ 警告

不安全的低压电源

由于电压击穿导致有爆炸危险的区域内存在爆炸危险。

▶ 请将此设备连接到一个带有安全隔离装置的低压电源。

⚠ 警告

在通电状态下连接设备

在具有爆炸危险的区域内存在爆炸危险

- ▶ 只能在断电状态下在有爆炸危险的区域内连接此设备。
 - → **例外情况:** 限能电路也允许在带电情况下在有爆炸危险的区域内 进行连接。

⚠ 警告

缺少电位补偿

缺少电位补偿时引发的补偿电流或点火火花会导致有爆炸危险的区域内存在爆炸危险。

- ▶ 请确保设备电位均衡。
 - ⇒ **例外情况:** 对于本安型防爆类型 "Ex i"的设备,必要时可忽略电位补偿。

⚠ 警告

无保护的电缆端部

由于无保护的电缆端部导致有爆炸危险的区域内存在爆炸危险。

▶ 请根据 IEC/EN 60079-14 对不使用的电缆端部进行保护。

⚠ 警告

屏蔽电缆敷设不当

由于有爆炸危险的区域和没有爆炸危险区域之间的补偿电流造成的爆炸危险。

- ▶ 请只在一端对接入有爆炸危险区域内的屏蔽电缆进行接地。
- ▶ 如果两端都需要接地,则请使用电位补偿导线。

8 电气连接 ARCA Regler GmbH

▲ 警告

不适用的电缆和/或电缆接头

若所连接的电缆和/或电缆接头相互不适配或不符合技术要求,则在有爆炸危险的区域内存在爆炸危险。

- ▶ 请只使用符合规定要求的电缆和电缆接头。
- ▶ 请根据规定的扭矩拧紧电缆接头。
- ▶ 更换电缆接头时,请只使用相同结构型式的电缆接头。
- ▶ 安装好后,请检查电缆是否牢固。

小心

设备中形成冷凝液

如果运输或存放与安装地点之间的温差超过了 20 °C,则会形成冷凝液,从而导致设备损坏。

• 请在将设备投入运行之前,将此设备在新环境下放置几小时。

小心

环境温度过高

电缆绝缘层损坏。

■ 环境温度 ≥ 60 ° C 时,请使用设计用于高出环境温度至少 20 ° C 的耐热电缆。

小心

电压源与电流输入端的连接

若将电压源连接到电流输入端 I_w (端子 6 和 7) ,则会损坏设备。

- 绝不允许将电流输入端 I 连接到电压源,否则可能会损坏定位器。
- 请始终使用最大输出电流为 I = 20 mA 的电源。

▲ 警告

"Ex i" 规格

作为辅助电源电路、控制电路和信号电路, 只允许连接经认证的本安电路。

在标准的电缆接头 M20x1.5 中,出于密封性(IP-外壳防护等级)和所需抗拉强度的原因,请只使用直径 \geq 8 mm 的电缆或在直径较小时使用适当的密封插件。

在 NPT 规格中,此定位器随供有一个适配器。请确保,将配合件装入适配器中时不得超过允许的最大扭矩 10 Nm。

双线制模式

为了保持辅助能源,输入电流必须为 Iw = 3.6 mA。

ARCA Regler GmbH 8 电气连接

8.1 基本设备的电气连接

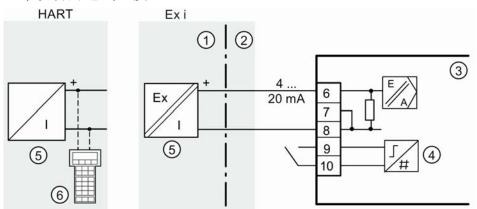


图 27: 2 线制设备的 2 线连接

1 无爆炸危险的区域	4 二进制输入端 1
2 具有爆炸危险的区域	5 信号源
3 基础电子设备	6 HART 通信器

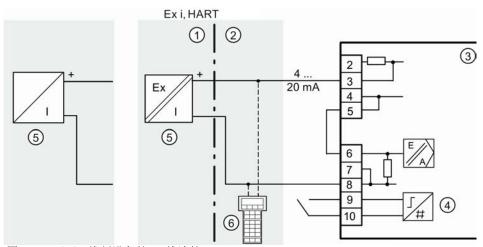


图 28: 2/3/4 线制设备的 2 线连接

1 无爆炸危险的区域	4 二进制输入端 1
2 具有爆炸危险的区域	5 信号源
3 基础电子设备	6 HART 通信器

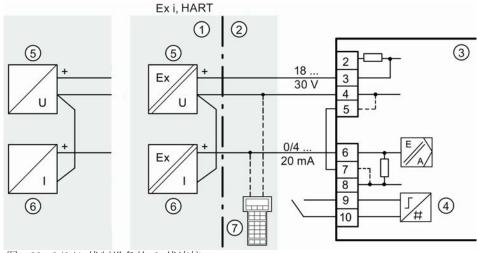


图 29: 2/3/4 线制设备的 3 线连接

1 无爆炸危险的区域 5 馈电电源

8 电气连接 ARCA Regler GmbH

 2 具有爆炸危险的区域
 6 信号源

 3 基础电子设备
 7 HART 通信器

 4 二进制输入端 1

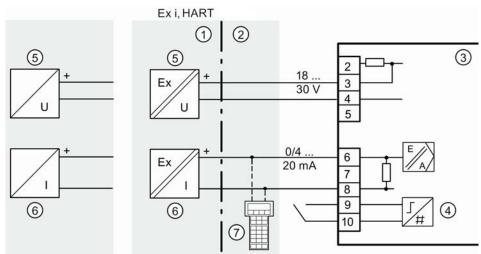


图 30: 2/3/4 线制设备的 4 线连接

1 无爆炸危险的区域	5 馈电电源
2 具有爆炸危险的区域	6 信号源
3 基础电子设备	7 HART 通信器
4 二进制输入端 1	

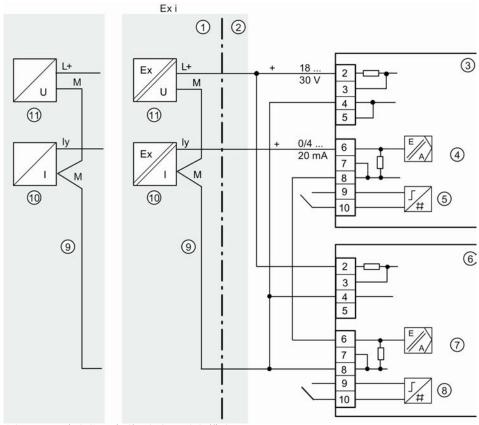


图 31:2 个定位器串联,例如:分程模式

1 无爆炸危险的区域	6 设备 2
2 具有爆炸危险的区域	7 调节范围 2
3 设备 1	8 二进制输入端 2
4 调节范围 1	9 总调节范围 ly

ARCA Regler GmbH 8 电气连接

5 二进制输入端 1	10 信号源
	11 馈电电源

8.2 选件的电气连接

模拟模块

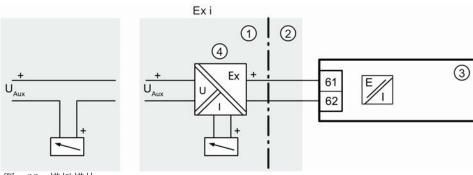


图 32: 模拟模块

1 无爆炸危险的区域	3 位置反馈模块
2 具有爆炸危险的区域	4 馈电隔离器

二进制模块

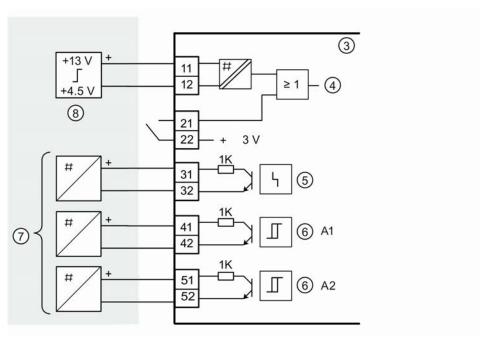
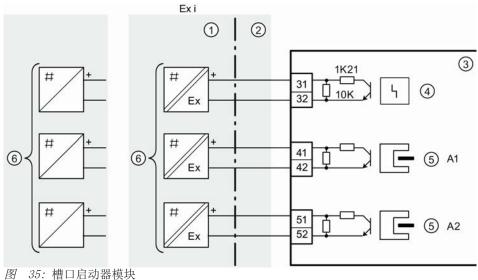


图 33: 无防爆功能的二进制模块


1 无爆炸危险的区域	5 故障信息
2 具有爆炸危险的区域	6 极限值
3 报警模块	7 开关放大器
4 二进制输入端 2	8 开关输出端

8 电气连接 ARCA Regler GmbH

1 无爆炸危险的区域	5 故障信息
2 具有爆炸危险的区域	6 极限值
3 报警模块	7 开关放大器
4 二进制输入端 2	8 开关输出端

槽口启动器模块

1 无爆炸危险的区域	4 故障信息
2 具有爆炸危险的区域	5 极限值
3 SIA 模块	6 开关放大器

ARCA Regler GmbH 8 电气连接

触点模块

▲ 危险

低电压供给 - 无防爆功能的规格

若给非本安型设备规格的模块供给低电压,则在开始操作设备之前,必须确保遵守以下安全规定:

- ▶ 切断设备电源。为此,请在设备附近安装一个断路器。
- ▶ 请对设备进行防意外重启保护。
- ▶ 请检查,是否真正已无电压。

⚠ 警告

机械冲击保护

为了确保达到保护等级 IP66,必须对模块采取防机械冲击保护。通过选择一个合适的安装地点或通过安装一个合适的保护装置可获得这种保护。此保护义务适用于具有以下电压的模块的操作:

- ► > AC 16 V
- ► > DC 35 V, 低电压

注意

端子 41/42 和 51/52 的最大值 - 无防爆功能的规格

以下最大值仅针对端子 41 和 42 以及端子 51 和 52:

- 最大电压: AC 250 V 或 DC 24 V
- 最大电流: AC/DC 4 A

无法确保各端子之间安全隔离。

注意

端子 41/42 和 51/52 的最大值 - "Exi" 规格

以下最大值仅针对端子 41 和 42 以及端子 51 和 52:

- 最大电压: DC 30V
- 最大电流: DC 100 mA
- 最大功率: 750 mW

无法确保各端子之间安全隔离。

注意

安装和连接之前需要注意

- 仅具备资质的人员有权安装和连接触点模块。
- 请切断所有电缆的电源,并检查是否真正已无电压。
- 连接电缆的横截面积应适用于允许的电流负载。
- 请根据以下规定选择电缆: 电缆的允许使用温度必须高于最高环境温度 25°C。
- 仅用经批准的开关放大器在本安电路中运行 Ex 规格。

注意


电缆或绞线的准备 - "Exi"规格

- 对电缆进行绝缘时,应确保在插入电线时绝缘层与端子齐平。
- 在绞线两端安装一个芯线套管。

8 电气连接 ARCA Regler GmbH

连接触点模块(见图 36)。

- 1. 松开透明盖板(19)上的螺丝(18)。
- 2. 将透明盖板(19)向上拉至前方限位挡块处。
- 3. 将每根电缆都紧紧拧在相应的端子中。
- 4. 将透明盖板(19)推至主板的限位挡块处。
- 5. 拧紧透明盖板 (19) 上的螺丝 (18)。
- 6. 将每个开关的电缆成对固定到印刷电路板的接线片上。为此,可使用 随供的电缆扎带(20)。

18 螺丝

19 盖板 20 电缆扎带

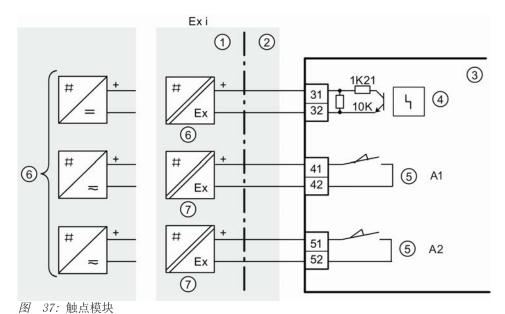


图 36: 电缆固定

1 无爆炸危	险的区域 5	极阝	艮值
2 具有爆炸	危险的区域 6	开沪	失放大器
3 极限值触	点模块 7	开沪	
4 故障信息			

ARCA Regler GmbH 8 电气连接

8.3 插头 M12 的可选规格

本章中说明了,以下列示的设备和选配模块的哪些端子已与插头 M12 的相应电极相连。

图 38: 插接面电极视图

电极名称	插头 M12 绞线颜色
1	棕色
4	黑色
3	蓝色
2	白色

2 线制基本设备中的插头 M12

电流输入端端子	电极名称
6 (+)	1 - 棕色
外壳屏蔽层	4 - 黑色
7 和 8 (-)	3 - 蓝色

用于模拟模块的插头 M12

电流输入端端子	电极名称
61 (+)	1 - 棕色
外壳屏蔽层	4 - 黑色
62 (-)	3 - 蓝色

用于二进制模块和槽口启动器模块的插头 M12

警报输出端端子	电极名称
41 (+)	1 - 棕色
42 (-)	3 - 蓝色
51 (+)	2 - 白色
52 (-)	4 - 黑色

用于外部位移传感器的插头 M12

端子	电极名称
GND (X1/1)	4 - 黑色
POT (X1/2)	3 - 蓝色
VREF (X1/3)	2 - 白色
VCC (X1/4)	1 - 棕色

9 气动连接 ARCA Regler GmbH

9 气动连接

▲ 警告

出于安全原因,安装完后若存在电气信号,则需先将定位器切换到 P 手动模式操作层,然后才能供给辅助气源。

(供货状态,参见折页"简明操作说明")。

注意

注意空气质量!

不含浸油水和灰尘的仪表空气,固体含量最大为 $1 \text{ mg/m}^3 \text{ i. N.}$,最大颗粒大小为 1 mm,含油量最大为 $0.1 \text{ mg/m}^3 \text{ i. N.}$,最低环境温度下的压缩露点为 20 K.

在压缩空气管网上工作时请注意,必须通过自由吹扫清除建设方可能存在的污物,如水、油、切屑、焊剂残留物等。

1. 必要时,连接用于供气压力和调节压力的压力表模块。

2. 通过内螺纹连接:

P₇: 进气 1.4 至 7 bar

Y1: 用于单作用式和双作用式执行机构的调节压力 1

Y2: 用于双作用式执行机构的调节压力 2

E: 排气出口(必要时移除降噪器)

3. 辅助电源发生故障时的安全位置:

单作用式: Y1 = 排气

双作用式: Y1 = 最大调节压力(供气压力)

双作用式: Y2 = 排气

4. 根据所需的安全位置连接调节压力 Y1 或 Y2 (仅针对双作用式执行机构)。

5. 将进气连接到 P7。

为了使弹簧加载的气动执行机构能够可靠地充分利用最大可用调节行程, 供给压力必须远大于执行机构所需的最大终端压力。

请在安装完气动接口后检查整个阀门的密封性。除了连续的空气消耗外, 定位器还会不断尝试补偿由于泄漏造成的位置偏差。这将导致整个控制设备过早发生磨损。

操作步骤:

ARCA Regler GmbH 10 调试

10 调试

参见折页"简明操作说明"!

⚠ 警告

在具有爆炸危险的区域内调试不当

设备失灵或在具有爆炸危险的区域内存在爆炸危险

- ▶ 只有在已完全安装且连接好后,才能运行设备。
- ▶ 调试之前,请注意对系统中其它设备的影响。

▲ 警告

失去防爆功能

若设备已打开或未正确关闭,则会导致在具有爆炸危险的区域内存在爆炸 危险。

⚠ 警告

在通电状态下打开设备

在具有爆炸危险的区域内存在爆炸危险

- ▶ 只能在断电状态下打开设备。
- ▶ 调试之前请检查,盖板、盖板的保险装置和电缆引入口是否均已按规 定安装好。
 - ⇒ **例外情况:** 本安型 "Ex i" 防爆设备,也允许在带电的情况下在 具有爆炸危险的区域内打开。

▲ 警告

压缩空气管路中有水

设备损坏并可能丧失防爆特性。扫气转换开关的出厂设置为"IN"。 在"IN"位置,首次调试时压缩空气管路中的水可能会通过气动装置进入 设备中。

- ▶ 调试之前,请确保压缩空气管路中没有水。
 - ⇒ 如果无法确保压缩空气管路中没有水。
- ▶ 请将扫气转换开关设为"OUT"。这样便可防止压缩空气管路中的水进入设备中。
- ► 仅在压缩空气管路中的水全部排出后,才能重新将扫气转换开关设 为"IN"。

注意

失去设备防护等级

如果外壳打开或关闭不当,则会造成设备损坏。铭牌上给出的设备防护等级则无法再得到保证。

■ 请确保,已安全关闭设备。

10 调试 ARCA Regler GmbH

▲ 警告

在存在故障信息的情况下进行调试和运行

如果显示有一条故障信息,则无法再确保过程中的操作正确。

- ▶ 请检查故障的严重性。
- ▶ 请排除故障。
- ▶ 若发生故障:
 - ⇒请停止运行设备。
 - ⇒ 请防止重新进行调试。

注意

- 初始化期间,工作压力必须至少比关闭或打开阀门所需的压力高 1 bar。但是,工作压力不得高于执行机构允许的最大工作压力。
- 传动比开关只有在定位器处于打开状态时才可调整。因此,请在关闭 外壳之前检查此设置。

使用天然气运行时的安全提示

使用天然气作为执行机构介质运行时,电气连接的防护等级必须为"ia",类别 2G。详细信息和安全提示,参见设备手册 827A-GHB 天然气。

一般信息

将定位器安装到气动执行机构之后,必须给定位器供给辅助气源和辅助电源。

初始化之前,定位器处于"P手动模式"。同时,数字显示屏的下面一行会闪烁"NOINI"。

通过初始化过程和参数设置,可根据相应的执行机构调节定位器。必要时,可使用参数"PRST"取消在执行机构上对定位器的调整。这一过程完成后,定位器会再次处于"P手动模式"。

初始化类型

• 自动初始化

初始化会自动进行。在此期间,定位器会相继确定执行机构的作用方向、行程、旋转角度和调整时间,并且还会根据执行机构的动态特性 调整控制参数。

• 手动初始化

手动设置执行机构的行程和旋转角度,其余参数与自动初始化的情况一样,都是自动确定的。此功能需要在"软"限位挡块处进行。

■ 复制初始化数据(定位器更换)

可读取定位器的初始化数据,并将其导入另一个定位器中。通过此方法,无需由于进行初始化中断正在进行的过程,即可更换损坏的设备。

进行初始化之前,只需给定位器设定一些参数。通过预先设定的值,则无 需调整其它参数以进行初始化

通过已进行相应参数设置且激活的二进制输入端,可对已进行的设置进行保护,以防不慎调整。

10.1 线性执行机构的调试准备

• 请使用合适的安装套件安装定位器。在此,定位器中传动比开关的位置至关重要。

ARCA Regler GmbH 10 调试

行程	操作杆	传动比开关的位置
5 到 20 mm	短	33° (即下降)
25 到 35 mm	短	90° (即上升)
40 到 130 mm	长	90° (即上升)

- 连接合适的电流源或电压源。
- 将执行机构和定位器连接气动管路,并为定位器提供辅助气源。
- 定位器此时处于运行模式 "P **手动模式**"。在显示屏的上面一行显示了以 % 为单位的当前电位计电压 (P),例如: "P37.5",并在下面一行闪烁显示"NOINI":

- 若要检查机械装置是否可在整个调节范围内自由移动,则请使用 / 按键和 / 按键将执行机构移至相应的终端位置。在此不得低于值 P5.0 且不得高于值 P95.0。这两个值之间的差值必须大于 25.0。持续按住一个方向键,并额外按下另一个方向键,可快速移动执行机构。
- 此时,将执行机构移动至操作杆的水平位置。显示屏上应显示一个位于 P48.0 和 P52.0 之间的值。如果情况并非如此,则必须相应调整摩擦离合器。该值越接近"P50.0",定位器中的线性化过程就越精确。

10.1.1 线性执行机构的自动初始化

当您能够正确移动执行机构时,请将其置于中间位置,并开始自动初始 化:

1. 按下 图按键超过 5 秒钟。由此可进入配置模式。显示:

2. 切换到第二个参数"YAGL",可短暂按下 ☑按键。显示:

或

此值必须与传动比开关的设置相匹配(33° 或 90°)。

3. 操作 图按键,可继续切换到以下显示:

10 调试 ARCA Regler GmbH

只有需要在初始化阶段结束时显示确定的总行程(单位: mm)时,才必须设置此参数。为此,请在显示中选择与在操作杆刻度尺上调节的传动销值相同的值。

4. 操作 图按键,可继续切换到以下显示:

5. 按下 △ 按键超过 5 秒钟,开始初始化过程。显示:

初始化过程运行期间,会在显示屏的下面依次显示"RUN1"至"RUN5"。根据执行机构的不同,初始化过程最多可持续 15 分钟,出现以下显示时表示初始化已完成:

在第 1行还会显示确定的行程(单位: mm),如果已通过参数"3.YWAY"给出了设定的操作杆长度。

短暂按下 图 按键会出现以下显示内容:

若要退出 **配置模式**,则请按下 **②** 按键超过 5 秒钟。约 5 秒钟后会显示软件状态。松开 **③** 按键后,设备处于手动模式。

通过按下 按键,可随时中断正在进行的初始化过程。将保留您之前进行的设置。只有在进行了"预设 (Preset)"后,才会将所有参数 复位为出厂设置。

成功完成初始化后,必要时可锁定摩擦离合器和传动比开关。

10.1.2 线性执行机构的手动初始化

通过此功能可对定位器进行初始化,无需将执行机构移至限位挡块处。需要手动设置调节行程的起始位置和结束位置。

当您能够正确移动执行机构时,请将其置于中间位置,并开始进行手动初始化。其余初始化步骤(控制参数的优化)将如同自动初始化一样自动完成。

1. 按下 逻按键超过 5 秒钟。由此可进入配置模式。显示:

ARCA Regler GmbH 10 调试

2. 切换到第二个参数,可短暂按下 ∑按键。显示:

或

此值必须与传动比开关的设置相匹配(33°或90°)。

3. 操作 图按键,可继续切换到以下显示:

只有需要在初始化阶段结束时显示确定的总行程(单位: mm)时,才必须设置此参数。为此,请在显示中选择与在操作杆刻度尺上调节的传动销值相同的值。

4. 通过两次按下 图按键,可继续切换到以下显示:

5. 按下 🛆 按键超过 5 秒钟,开始初始化过程。显示:

6. 5 秒钟后显示内容切换为:

(此处以及以下显示的电位计位置仅用作示例)。

此时,请操作 全和 **按键将执行机构移动到您需要将其定义为两个结束位置中第一个结束位置的位置。然后,按下** 按键。由此,可将当前位置应用为结束位置 1,并继续切换到下一个步骤。

若在下面一行显示信息"RANGE",则表示所选的结束位置超出了允许的测量范围。可以通过多种方式修正此错误:

调整摩擦离合器,直至显示"OK",然后重新按下运行模式按键,或者

10 调试 ARCA Regler GmbH

操作 △和 ▽按键驶向其它结束位置,或

按下 按键中止初始化过程。然后,必须切换到 P 手动模式,并修 正调节行程和行程检测。

7. 若第 6 步已成功完成,则会出现以下显示:

此时,请操作 全和 安键将执行机构移动到您需要将其定义为第二个结束位置的位置。然后,按下 按键。由此,可将当前位置应用为结束位置 2。

若在下面一行显示信息"RANGE",则表示所选的结束位置超出了允许的测量范围。可以通过多种方式修正此错误:

- 调整摩擦离合器,直至显示"OK",然后重新按下 ∑按键,或者
- 操作 △和 ▽按键驶向其它结束位置,或
- 按下 ₹ 按键中止初始化过程。然后,必须切换到 P 手动模式, 并修正调节行程和行程检测。

若出现信息"Set Middl",则必须借助 △和 ▽按键将杆臂移动到水平位置,然后操作 ☑ 按键。由此,可设置线性执行机构正弦修正的参考点。

8. 此时,剩余的初始化过程会自动完成。在显示屏的下面一行依次显示"RUN1"至"RUN5"。初始化过程成功完成后,会出现以下显示:

在第 1行还会显示确定的行程(单位:毫米),如果已通过参数"3.YWAY"给出了设定的操作杆长度。

短暂按下 还按键,会在下面一行重新显示"5. INITM"。以此表示设备重新处于配置模式。

若要退出配置模式,则需按下 ☑按键超过 5 秒钟。约 5 秒钟后会显示软件状态。松开 ☑按键后,设备处于手动模式。

成功完成初始化后,必要时可锁定摩擦离合器和传动比开关。

10.2 旋转执行机构的调试准备

将定位器中的传动比开关调至 90° (旋转执行机构的常规调整角度)。

- 1. 请使用合适的安装套件安装定位器。
- 2. 连接合适的电流源或电压源。
- 3. 将执行机构和定位器连接气动管路,并为定位器提供辅助气源。
- 4. 定位器此时处于运行模式"P **手动模式**"。在显示屏的上面一行显示了以 % 为单位的当前电位计电压(P),例如:"P37.5",并在下面一行闪烁显示"NOINI":

ARCA Regler GmbH 10 调试

5. 若要检查机械装置是否可在整个调节范围内自由移动,则请使用 ← 按键和 ∀按键将执行机构移至相应的终端位置。在此不得低于值 P5.0 且不得高于值 P95.0。这两个值之间的差值必须大于 25.0。 持续按住一个方向键,并额外按下另一个方向键,可快速移动执行机构。

10.2.1 旋转执行机构的自动初始化

当您能够使执行机构正确驶过整个调节范围时,请将其置于中间位置,并 开始自动初始化:

1. 按下 🖸 按键超过 5 秒钟。由此可进入配置模式。显示:

2. 操作 ▽按键将此参数调为"turn"。显示:

3. 切换到第二个参数,可短暂按下 **2**按键。已将此参数自动设置为 90°。显示:

请注意, 传动比开关必须处于 90° 位置。

4. 操作 图按键,可继续切换到以下显示:

5. 按下 △按键超过 5 秒钟,开始初始化过程。显示:

初始化过程运行期间,会在显示屏的下面依次显示"RUN1"至"RUN5"。根据执行机构的不同,初始化过程最多可持续 15 分钟,出现以下显示时表示初始化已完成:

10 调试 ARCA Regler GmbH

上方的值给出了执行机构的总旋转角度(示例: 93.5°)。短暂按下 按键会出现以下显示内容:

若要退出 **配置模式,**则请按下 **②**按键超过 5 秒钟。约 5 秒钟后会显示软件状态。松开 **③**按键后,设备处于手动模式。

通过按下 按键,可随时中断正在进行的初始化过程。将保留您之前进行的设置。只有在进行了"预设 (Preset)"后,才会将所有参数复位为出厂设置

成功完成初始化后,必要时可锁定摩擦离合器和传动比开关。

10.2.2 旋转执行机构的手动初始化

通过此功能可对定位器进行初始化,无需将执行机构移至限位挡块处。需要手动设置调节行程的起始位置和结束位置。

当您能够正确移动执行机构时,请将其置于中间位置,并开始进行手动初始化。其余初始化步骤(控制参数的优化)将如同自动初始化一样自动完成。

1. 按下 图按键超过 5 秒钟。由此可进入配置模式。显示:

2. 操作 ▽按键将参数 "YFCT" 调至 "turn"。显示:

3. 切换到第二个参数,可短暂按下 按键。显示:

请注意, 传动比开关必须处于 90° 位置。

4. 通过两次按下 图按键,可继续切换到以下显示:

后续步骤与线性执行机构初始化的步骤 5 至 8 相同。

初始化成功完成后,已经确定的旋转范围会以度为单位显示在上方显示屏上。

短暂按下 **还**按键,会在下面一行重新显示"5. INITM"。以此表示设备重新处于配置模式。

ARCA Regler GmbH 10 调试

若要退出配置模式,则需按下 图按键超过 5 秒钟。约 5 秒钟后会显示软件状态。松开 图按键后,设备处于手动模式。

成功完成初始化后,必要时可锁定摩擦离合器和传动比开关。

10.3 复制初始化数据(定位器更换)

- 电控气动定位器可在设备运行时进行更换, 无需中断流程。
- 通过复制和传输设备数据和初始化数据,可运行事先未进行初始化的 替换定位器。
- 在此, 电控气动定位器将使用通信接口传输数据。

若要更换定位器,则需执行以下步骤:

- 1. 通过 SIMATIC PDM 或 HART 通信器读入并保存好待更换设备的设备参数和初始化数据(在初始化时确定)。若已通过 SIMATIC PDM 对此设备进行了参数设置,并已保存好数据,则无需执行此步骤。
- 2. 将执行机构固定在其当前位置中(机械方式或气动方式)。
- 3. 从待更换定位器的显示屏中读取并记录当前的位置实际值。若电子设备损坏,则通过测量查明执行机构或阀门上的当前位置。
- 4. 拆除定位器。将定位器的杆臂安装到替换设备上。将替换设备安装到阀门上。将传动比开关移动到损坏设备所处的相同位置。从 SIMATIC PDM 或 HART 通信器上下载设备数据和初始化数据。
- 5. 如果所示的实际值与从损坏的定位器中记录下来的值不一致,则借助 摩擦离合器设置正确值。
- 6. 此时,定位器已准备就绪。

相对正确的初始化过程,精确性和动态特性可能会受到限制。尤其是硬挡块的位置以及与之相关的维护数据可能会出现偏差。因此,必须在下一次时重复进行初始化。

注意

后续初始化

请尽快对替换定位器进行初始化。只有经过初始化,才能确保以下特性:

- 定位器与执行机构的机械和动态特性最佳适配
- 定位器的精确性和动态特性不受限制
- 硬挡块的位置没有偏差
- 维护数据正确

11 参数概述 ARCA Regler GmbH

11 参数概述

11.1 参数 1 至 5

所有设备规格的定位器的参数 $1 \le 5$ 均相同。通过这些参数可根据执行机构调整定位器。通常情况下,设置这些参数便足以使定位器能够在执行机构上运行。

如果需要了解定位器的所有详细信息,请通过有针对性地测试逐步试验其余参数的影响。

参数	功能	参数值(粗体 = 出厂	⁻ 设置)		单位
1. YFCT	伺服执行机构类型		正常	反向	
		旋转执行机构	turn	-turn	
		线性执行机构	WAY	-WAY	
		无正弦修正的线性执 行机构	LWAY	-LWAY	
		具有 NCS 的旋转执 行机构	ncSt	-ncSt	
		具有 NCS 的线性执行机构	ncSL	- ncSL	
		具有 NCS 和操作杆 的线性执行机构	ncSLL	-ncSLL	
2. YAGL	反馈信息的额定旋转角度				
	■ 参数只在为"turn"或"WAY"时才会显示;若选择了"turn",则无法设置。33°。				己为
	■ 对传动比开关进行相应设	置			
		33°			0
		90°			
3. YWAY	行程范围 (可选设置)				OFF
	■ 参数只在为"WAY"和"n	cSLL"时才会显示			
	使用时,该值必须与执行 执行机构的行程值,或者 的刻度值。)				
		5 10 15 20 (短操作杆 33°))	mm
		25 30 35 (短操	作杆 90°)		
		40 50 60 70	90 110 1	130	
		(长操作杆 90°)			
4. INITA	初始化(自动)	NOINI no / ###.#	Strt		
5. INITM	初始化 (手动)	NOINI no / ###.#	Strt		

11.2 参数 6 至 52

通过这些参数,可对定位器的以下附加功能进行设置:

- 额定值准备
- 实际值准备
- 二进制信号处理
- 密封封闭功能
- 限值检测

ARCA Regler GmbH 11 参数概述

参数	功能		参数值 (粗体 = 出厂设置)	单位
6. SCUR	额定值的电流范围	<u> </u>		
	0 ··· 20 mA		O MA	
	4 ··· 20 mA		4 MA	
7. SDIR	额定值装置			
	上升		riSE	
	下降		FALL	
8. SPRA	额定值分程起始点	点	0.0 ··· 100.0	%
9. SPRE	额定值分程终点		0.0 100.0	%
10. TSUP	额定值斜率开启		自动 / 0 ··· 400	S
11. TSD0	额定值斜率关闭		0 ··· 400	S
12. SFCT	额定值功能			
	线性		Lin	
	等百分比	1 : 25	1 - 25	
		1 : 33	1 - 33	
		1 : 50	1 - 50	
	反等百分比	25 : 1	n1 - 25	
		33 : 1	n1 - 33	
		50 : 1	n1 - 50	
	自由可调		FrEE	
13. SL0 ··· 33. SL20	额定值控制点(另	只有在选择了	了 12. SFCT = "FrEE" 时才会显示控制点)	
13. SL0	在 0 %			
14. SL1	5 % …		0.0 100.0	%
32. SL19	95 %			
33. SL20	100 %			
34. DEBA	控制器死区		自动 / 0.1 ··· 10.0	%
35. YA	调节变量界限 起点		0.0 ··· 100.0	%
36. YE	调节变量界限 终点		0.0 ··· 100.0	%
37. YNRM	调节变量标准化			
	机械方式		MPOS	
	流量		FLOW	
38. YDIR	用于显示和位置原	反馈的调节3	变量作用方向	
	上升		riSE	
	下降		FALL	
39. YCLS	密封封闭/快速封	闭的调节变	量	
	无		no	
	上部密封封闭		uP	
	下部密封封闭		do	
	上部和下部密	封封闭	uP do	
	上部快速封闭		Fu	

11 参数概述 ARCA Regler GmbH

	工物体法共同	D.I		
	下部快速封闭	Fd		
		Fu Fd		
	上部密封封闭和下部快速 封闭	uP Fd		
	上部快速封闭和下部密封 封闭	Fu do		
40. YCDO	密封封闭下限值	0.0 0.5	100	%
41. YCUP	密封封闭上限值	0.0 99.5	100	%
42. BIN1	BE1 的功能	常开触点	常闭触点	
	, , , , , ,		(开关已打开或低电平时的	
	无	0FF		
	仅信息	on	-on	
	锁定配置	bloc1		
	锁定配置和手动	bloc2		
	将阀门移动到位置 YE	uP	-uP	
	将阀门移动到位置 YA	doWn	-doWn	
	锁定移动	StoP	-StoP	
	部分行程测试	PST	-PST	
43. BIN2	BE2 的功能	常开触点	常闭触点	
			(开关已打开或低电平时的	
	无	OFF		
	仅信息	on	-on	
	将阀门移动到位置 YE	uP	-uP	
	将阀门移动到位置 YA	doWn	-doWn	
	锁定移动	StoP	-StoP	
	部分行程测试	PST	-PST	
44. AFCT	报警功能	正常	反向	
		(高电平无故障)	(低电平无故障)	
	无	OFF		
	A1 = 最小, A2 = 最大	ARBAR	5.1.58	
	A1 = 最小, A2 = 最小	86886	8080	
	A1 = 最大, A2 = 最大	NA NA	AR AR	
45. A1	警报 1 响应阈值	0.0 10.0	100	%
46. A2	警报 2 响应阈值	0.0 90.0	100	%
47. \ FCT	故障信息输出功能	正常	反向	
	("+"表示:逻辑或运算)	(高电平无故 障)	(低电平无故障)	
	故障	88888	HS888	
	故障 + 非自动	_ სიმ	-4nR	

ARCA Regler GmbH 11 参数概述

	故障 + 非自动 + BE	SnAb SnAb	
48. \ TIM	"控制偏差"故障信息设置 的监控时间	自动 / 0 … 100	S
49. \ LIM	"控制偏差"故障信息的响 应阈值	自动 / 0 … 100	%
50. PRST	预设		
	复位所有可通过 "Init"、"PArA" 和 "diAg" 复位的参数	ALL	
	复位初始化参数	Init	
	1. YFCT 至 5. INITM.		
	复位参数 6. SCUR 至 49. LIM。	PArA	
	复位扩展诊断功能的参数 A 至 P 以及参数 52. XDIAG	diAg	
51. PNEUM	气动装置类型		
	标准阀组	Std	
	原地失败(Fail-in-place) 阀组	FIP	
	使用增压器运行	booSt	
52. XDIAG	扩展诊断的激活		
		3 激活了参数后, 才会显示参数 A 至 P。同样 才会显示参数 A 至 P 的内容。	只有在通
	关闭	OFF	
	单级信息	On1	
	二级信息	On2	
	三级信息	On3	

11.3 参数 A 至 P

通过这些参数,可设置定位器的扩展诊断功能。

只有在通过参数值为 "0n1"、"0n2" 或 "0n3" 的参数 "XDIAG" 激活了扩展诊断后,才会显示参数 A 至 P 及其子参数。

参	数	功能	参数值 (粗体 = 出厂设置)	单位
Α.	h PST	通过以下参数进行部分行程	呈测试:	
	A1. STPOS	起始位置	0.0 100.0	%
	A2. STTOL	起始容差	0.1 2.0 10.0	%
	A3. STRKH	行程高度	0.1 10.0 100.0	%
	A4. STRKD	行程方向	uP / do / uP do	
	A5. RPMD	斜坡模式	OFF / On	
	A6. RPRT	斜率	0.1 1.0 100.0	%/s
	A7. FLBH	部分行程测试失败后的行为	自动 / Hold / AirIn / AirOu	
	A8. INTRV	测试间隔	OFF / 1 365	d
	A9. PSTIN	部分行程测试参考行程时间	NOINI / (C)##.#/ Fdini / rEAL	S

11 参数概述 ARCA Regler GmbH

AA. FACT1	系数 1	0.1 1.5 .		
Ab. FACT2	系数 2	0.1 3.0 .		
AC. FACT3	系数 3	0.1 5.0 .	100.0	
b. 4 DEVI	通过以下参数检测阀门的	一般故障:		
b1. TIM	时间常数	自动 / 14	400	S
b2.LIMIT	极限值	0.1 1.0 .	100.0	%
b3. FACT1	系数 1	0.1 5.0 .	100.0	
b4. FACT2	系数 2	0.1 10.0	100.0	
b5. FACT3	系数 3	0.1 15.0	100.0	
C. 4 LEAK	通过以下参数检测气动泄	漏情况:		
C1. LIMIT	极限值	0.1 30.0	100.0	%
C2. FACT1	系数 1	0.1 1.0 .	100.0	
C3. FACT2	系数 2	0.1 1.5 .	100.0	
C4. FACT3	系数 3	0.1 2.0 .	100.0	
d. 4 STIC	通过以下参数检测静摩擦	(粘滑效应):		
d1.LIMIT	极限值	0.1 1.0 .	100.0	%
d2. FACT1	系数 1	0.1 2.0 .	100.0	
d3. FACT2	系数 2	0.1 5.0 .	100.0	
d4. FACT3	系数 3	0.1 10.0	100.0	
E. 4 DEBA	通过以下参数监控死区:			
E1. LEVEL3	阈值	0.1 2.0 .	10.0	%
F. 4 ZERO	通过以下参数监测零点偏	移量:		
F1. LEVEL1	阈值 1	0.1 1.0 .	10.0	%
F2. LEVEL2	阈值 2	0.1 2.0 .	10.0	%
F3. LEVEL3	阈值 3	0.1 4.0 .	10.0	%
G. 4 PEN	通过以下参数监测上部限	位挡块的偏移:		
G1. LEVEL1	阈值 1	0.1 1.0 .	10.0	%
G2. LEVEL2	阈值 2	0.1 2.0 .	10.0	%
G3. LEVEL3	阈值 3	0.1 4.0 .	10.0	%
H. 4 TMIN	通过以下参数监控温度下	限:		
H1. TUNIT	温度单位	° C	° F	° C/° F
H2. LEVEL1	阈值 1	-40 -25 90	-40 194	
H3. LEVEL2	阈值 2	-40 - 30 90	-40194	
H4. LEVEL3	阈值 3	-40 90	-40194	
J. 4 TMAX	通过以下参数监控温度上	限:		
J1. TUNIT	温度单位	° C	° F	° C/° F
J2. LEVEL1	阈值 1	-40 75 90	-40194	
J3. LEVEL2	阈值 2	-40 80 90	-40194	
J4. LEVEL3	阈值 3	-40 90	-40194	
L. \ STRK	通过以下参数监控总行程			
L1. LIMIT	方向改变次数极限值	1 1E6	1E8	

ARCA Regler GmbH 11 参数概述

L2. FACT1	系数 1	0.1 1.0 40.0	
L3. FACT2	系数 2	0.1 2.0 40.0	
L4. FACT3	系数 3	0.1 5.0 40.0	
O. 4 DCHG	通过以下参数监控方向变	化:	
O1. LIMIT	方向改变次数极限值	1 1E6 1E8	
02. FACT1	系数 1	0.1 1.0 40.0	
O3. FACT2	系数 2	0.1 2.0 40.0	
O4. FACT3	系数 3	0.1 5.0 40.0	
P. h PAVG	通过以下参数计算位置平:	均值:	
P1. TBASE	生成平均值的时间基准	0.5h / 8h / 5d / 60d / 2.5y	
P2. STATE	位置平均值的计算状态	IdLE / rEF / ###.#/ Strt	
P3. LEVEL1	阈值 1	0.1 2.0 100.0	%
P4. LEVEL2	阈值 2	0.1 5.0 100.0	%
P5. LEVEL3	阈值 3	0.1 10.0 100.0	%

12 维修和维护 ARCA Regler GmbH

12 维修和维护

基本安全提示

⚠ 警告

不允许维修设备

只允许由经授权的人员进行维修作业。

▲ 警告

不允许使用的附件和备件

有爆炸危险的区域内存在爆炸危险或设备损坏。

- ▶ 请仅使用原装附件和原装备件。
- ▶ 请注意设备、附件和备件说明书中所有相关的安装提示和安全提示。

▲ 警告

维护后连接不当

有爆炸危险的区域内存在爆炸危险或设备损坏

- ▶ 请在维护后正确连接设备。
- ▶ 请在维护后关闭设备。

小心

水分渗入设备内部

设备损坏

• 请注意,进行清洁和维护作业期间不得使水分渗入设备内部。

△ 小心

取消按键锁定

参数修改不当会影响过程安全性。

► 请确保,只允许经授权的人员在安全使用设备时取消设备的按键锁 定。

▲ 警告

静电荷

由于例如使用干抹布清洁外壳时产生的静电荷,会导致具有爆炸危险的区域存在爆炸危险。

▶ 请防止在具有爆炸危险的区域内产生静电荷。

ARCA Regler GmbH 12 维修和维护

▲ 警告

打开的外壳

由于设备内部的高温组件和/或带电荷电容器,导致具有爆炸危险的区域存在爆炸危险。

- ► 若要在具有爆炸危险的区域内打开设备,则必须事先切断设备电源。
 - ⇒ **例外情况:** 本安型 "Ex i" 防爆设备,也允许在带电的情况下在具有爆炸危险的区域内打开。

⚠ 警告

灰层厚度超过 5 mm

在具有爆炸危险的区域内存在爆炸危险。灰尘堆积可能会导致设备过热。

▶ 灰层超过 5 mm 时请进行清灰。

此定位器基本免维护。为了防止落入较大的污染颗粒,在定位器的气动接口中装配了滤筛。如果进气中存在污物,则会损坏滤筛,然后影响定位器的功能(增加调节时间)。在此情况下,可按照如下说明清洁滤筛:

- 1. 关断辅助气源,并移除管路。
- 2. 小心地从钻孔中移除金属滤筛,并进行清洁(例如使用压缩空气)。
- 3. 装入滤筛。
- 4. 重新连接好管路,并供给辅助气源。

13 技术数据 ARCA Regler GmbH

13 技术数据

基本设备的一般数据

保护等级	符合 EN60529 的 IP66
气候类别	符合 IEC 721
存放	1K5, 但温度为 -40 ° C ⋅⋅⋅ +80 ° C ¹)
运输	2K4, 但温度为 -40 ° C ··· +80 ° C ¹⁾
运行	4K3, 但温度为 -30 ° C ³) ··· +80 ° C ²) (标准 + FIP)
	4K3, 但温度为 -40···+80 ° C (LT) ²⁾
抗振动性	10 g 至 100 Hz
	整个阀门推荐的连续使用范围 ≤ 30 m/s²
CE 标志	适用的准则和标准以及其版本状态,请查看 EG 一致性声明。
安装位置	任意位置,在潮湿环境下气动接口和排气口不得朝上
接口	
电气	螺旋接线端 2.5 AWG28-12
	电缆套管 M 20x1.5 或
	电缆套管 ¹ / ₂ - 14 NPT
气动	内螺纹 G ¹ / ₄ DIN 45141 或
	内螺纹 ¹ / ₄ - 18 NPT

- 1) 调试时,若温度 ≤ 0°C 则需注意,必须使用干燥介质长时间充分冲洗阀门。
- 2) 针对防爆设备,参见电气数据。
- 3) 低于 -10° C 时, LCD 显示器的显示重复率受限。

基本设备的气动数据

辅助能源(进气)	
介质	仪表空气符合 DIN ISO 8573-1、2 级
压力	1.4…7 bar (标准) / 3…7 bar (FIP)

基本设备的电气数据

	型号 827A.E	型号 827A. X
防爆类型 本安型	_	II2G Ex ia IIC T4/T6 Gb $^{1)}$
环境温度		T4 -30 ···+80 ° C (标准 + FIP) T6 -30 ···+60 ° C (标准 + FIP) T4 -40 ···+80 ° C (LT) T6 -40 ···+60 ° C (LT)

1) 带模拟模块的型号 827A. X*-A**-** 时, 限制为 T4

不带 HART 的 2 线制电路	型号 827A.E	型号 827A.X
电流输入端 Iw	4 …	20 mA
用于保持辅助能源的电 流	≥ 3	. 6 mA
所需的负载电压 UB	\geqslant 6.5 V (\approx 325 Ω)	\geqslant 8.3 V (\approx 415 Ω)
静态损坏极限	\pm 40 mA	-

ARCA Regler GmbH 13 技术数据

1 200 1 12 1		=
内部电容 C _i	-	11 nF
内部电感 L _i	_	207 µH
连接到具有以下峰值的	_	$U_i = DC 30 V$
电路		$I_i = 100 \text{ mA}$
		$P_i = 1 W$
二进制输入端 BE1	可用于无	电势触点
(已与 Iw 电路进行电	最大触点负载 ≤	5 μA (为 3 V 时)
流连接)		
带 HART 的	型号 827A.E	型号 827A.X
2 线制电路		
电流输入端 Jw	4 …	20 mA
用于保持辅助能源的电	$\geqslant 3$. 6 mA
流		
所需的负载电压 U _B		\geqslant 8.8 V (\approx 440 Ω)
	\pm 40 mA	-
内部电容 C _i	-	11 nF
内部电感 L _i	-	310 µH
连接到具有以下峰值的	_	$U_i = DC 30 V$
电路		$I_i = 100 \text{ mA}$
		$P_i = 1 W$
二进制输入端 BE1	可用于无	电势触点
(已与 Iw 电路进行电	3 V 时的最大触	!点负载 ≤ 5 μA
流连接)		
VIEW CASA		
带/不带 HART 的 3/4	型号 827A.E	型号 827A.X
带/不带 HART 的 3/4 线制电路		
带/不带 HART 的 3/4 线制电路 辅助电压 U _H	DC 18···35 V	DC 18···30 V DC
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH	DC $18\cdots35$ V $I_{H} [mA] = (U_{H} [V] \cdot$	
带/不带 HART 的 3/4线制电路辅助电压 U _H 电流消耗 ICH静态损坏极限	DC 18···35 V	DC 18···30 V DC
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH	DC $18\cdots35$ V $I_{H} [mA] = (U_{H} [V] \cdot$	DC 18···30 V DC
带/不带 HART 的 3/4线制电路辅助电压 U _H 电流消耗 ICH静态损坏极限	DC $18\cdots35$ V $I_{H} [mA] = (U_{H} [V] \cdot$	DC 18···30 V DC - 7.5 V) / 2.4 kΩ -
带/不带 HART 的 3/4线制电路辅助电压 UH电流消耗 ICH静态损坏极限内部电容 Ci内部电感 Li连接到具有以下峰值的	DC 18···35 V $I_{H} [mA] = (U_{H} [V] + 35 V (U_{H} [V] + (U_{H} (V) + (U_{$	DC 18···30 V DC - 7.5 V) / 2.4 kΩ - 11 nF
带/不带 HART 的 3/4线制电路辅助电压 UH电流消耗 ICH静态损坏极限内部电容 Ci内部电感 Li	DC 18···35 V $I_{H} [mA] = (U_{H} [V] + 35 V (U_{H} [V] + (U_{H} (V) + (U_{$	DC 18···30 V DC - 7.5 V) / 2.4 kΩ - 11 nF 310 μH
带/不带 HART 的 3/4线制电路辅助电压 UH电流消耗 ICH静态损坏极限内部电容 Ci内部电感 Li连接到具有以下峰值的	DC 18···35 V $I_{H} [mA] = (U_{H} [V] + 35 V (U_{H} [V] + (U_{H} (V) + (U_{$	DC 18···30 V DC - 7.5 V) / 2.4 kΩ - 11 nF 310 μH U _i = DC 30 V
带/不带 HART 的 3/4线制电路辅助电压 UH电流消耗 ICH静态损坏极限内部电容 Ci内部电感 Li连接到具有以下峰值的	DC 18···35 V I _H [mA] = (U _H [V] · ± 35 V	DC $18\cdots30$ V DC -7.5 V) $/2.4$ k Ω -11 nF -310 μ H -30 U -30 U -30 U -30 U -30 H -30 U -30 H -30 MA
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电容 C _i 内部电感 L _i 连接到具有以下峰值的 电路	DC 18···35 V	DC $18\cdots30 \text{ V DC}$ $-7.5 \text{ V}) / 2.4 \text{ k}\Omega$ -11 nF $310 \mu\text{H}$ $U_i = \text{DC } 30 \text{ V}$ $I_i = 100 \text{ mA}$ $P_i = 1 \text{ W}$
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电容 C _i 内部电感 L _i 连接到具有以下峰值的 电路	DC 18···35 V	DC $18\cdots30$ V DC - 7.5 V) $/$ 2.4 k Ω - 11 nF 310 μ H U_i = DC 30 V I_i = 100 mA P_i = 1 W 或 4 至 20 mA
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电容 C _i 内部电感 L _i 连接到具有以下峰值的 电路	DC $18\cdots35$ V $I_{H} [mA] = (U_{H} [V] + 35 V $	DC $18\cdots30$ V DC - 7.5 V) $/$ 2.4 k Ω - 11 nF 310 μ H U_i = DC 30 V I_i = 100 mA P_i = 1 W 或 4 至 20 mA
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电容 C _i 内部电感 L _i 连接到具有以下峰值的 电路	DC $18\cdots35$ V $I_{H} [mA] = (U_{H} [V] + 35 V $	DC $18\cdots30 \text{ V DC}$ $- 7.5 \text{ V)} / 2.4 \text{ k}\Omega$ $- 11 \text{ nF}$ $310 $
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电容 C _i 内部电感 L _i 连接到具有以下峰值的 电流输入端 I _W 所需的负载电压 U _B 静态损坏极限 内部电容 Ci	DC $18\cdots35$ V	DC $18\cdots30 \text{ V DC}$ $-7.5 \text{ V}) / 2.4 \text{ k}\Omega$ -11 nF 310
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电感 L _i 连接到具有以下峰值的 电流输入端 I _W 所需损坏极限 内部电压 U _B 静态损坏极限 内部电感 Ci 内部电感 Li	DC $18\cdots35$ V	DC $18\cdots30$ V DC - 7.5 V) $/$ 2.4 k Ω - 11 nF 310 μ H $U_i = DC$ 30 V $I_i = 100$ mA $P_i = 1$ W 或 4 至 20 mA $\geqslant 1.0$ V (≈ 50 Ω) - 11 nF 310 μ H $U_i = DC$ 30 V
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电感 L _i 连接到具有以下峰值的 电流输入端 I _W 所需损数电压 U _B 静态损坏极限 内部电感 Ci 内部电感 Li 连接到具有以下峰值的	DC $18\cdots35$ V	DC $18\cdots30$ V DC - 7.5 V) $/$ 2.4 k Ω - 11 nF 310 μ H $U_i = DC$ 30 V $I_i = 100$ mA $P_i = 1$ W 或 4 至 20 mA $\geqslant 1.0$ V (≈ 50 Ω) - 11 nF 310 μ H $U_i = DC$ 30 V $I_i = 100$ mA
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电感 L _i 连接到具有以下峰值的 电流输入端 I _W 所需损坏极限 内部电感 Ci 内部电感 Li 连接到具有以下峰值的 内部电感 Li 连接到具有以下峰值的	DC $18\cdots35\ V$ $I_{H}\ [mA]\ =\ (U_{H}\ [V]\ $ $\pm\ 35\ V$ $-$ $-$ $-$ $-$ $0 至 20\ mA 章 \geqslant 0.2\ V\ (\approx\ 10\ \Omega) \pm\ 40\ mA - - -$	DC $18\cdots30$ V DC - 7.5 V) $/$ 2.4 k Ω - 11 nF 310 μ H U_i = DC 30 V I_i = 100 mA P_i = 1 W 或 4 至 20 mA $\geqslant 1.0$ V (≈ 50 Ω) - 11 nF 310 μ H U_i = DC 30 V I_i = 100 mA P_i = 1 W
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电感 L _i 连接到具有以下峰值的 电流输入端 I _W 所需损坏极限 内部电感 Ci 内部电感 Li 连接到具有以下峰值的 内部电感 Li 连接到具有以下峰值的	DC $18\cdots35$ V	DC $18 \cdots 30 \text{ V DC}$ $-7.5 \text{ V}) / 2.4 \text{ k}\Omega$ $ 11 \text{ nF}$ $310 \mu\text{H}$ $U_i = \text{DC } 30 \text{ V}$ $I_i = 100 \text{ mA}$ $P_i = 1 \text{ W}$ $\cancel{\text{X}} 4 \cancel{\text{Y}} 20 \text{ mA}$ $\geqslant 1.0 \text{ V } (\approx 50 \Omega)$ $ 11 \text{ nF}$ $310 \mu\text{H}$ $U_i = \text{DC } 30 \text{ V}$ $I_i = 100 \text{ mA}$ $P_i = 1 \text{ W}$ $\cancel{\text{A}} 4 \cancel{\text{A}} 1_{\text{W}} \cancel{\text{A}} \cancel{\text{C}} \cancel{\text{D}} \cancel{\text{C}} $
带/不带 HART 的 3/4 线制电路 辅助电压 U _H 电流消耗 ICH 静态损坏极限 内部电感 L _i 连接到具有以下峰值的 电流输入端 I _W 所需损坏极限 内部电感 Ci 内部电感 Li 连接到具有以下峰值的 内部电感 Li 连接到具有以下峰值的	DC $18\cdots35\ V$ $I_{H} [mA] = (U_{H} [V] + 35\ V - 40\ MA]$ $0 至 20\ MA $	DC $18\cdots30$ V DC - 7.5 V) $/$ 2.4 k Ω - 11 nF 310 μ H U_i = DC 30 V I_i = 100 mA P_i = 1 W 或 4 至 20 mA $\geqslant 1.0$ V (≈ 50 Ω) - 11 nF 310 μ H U_i = DC 30 V I_i = 100 mA P_i = 1 W

13 技术数据 ARCA Regler GmbH

二进制输入	、端 BE1
(已与 Iw	电路进行电
流连接)	

可用于无电势触点 3 V 时的最大触点负载 ≤ 5 µA

选件的电气数据

 防爆类型
 如基本设备 ¹⁾

 环境温度
 如基本设备 ¹⁾

1) 使用与基本设备的防爆类型相同的选件时,参见基本设备的电气数据。

	1) 使用与基本设备的防爆类型相同的选件时,参见基本	x设备的电气数据。
模拟模块	型号 827A.E	型号 827A. X
标称信号范围 I _y	4 · · · 20 mA 防短路保护	
调制范围	3.6 ··· 20.5 mA	
辅助电压 U _H	DC 12 ··· 35 V	DC 12 ··· 30 V
外部负载 R _B	$R_{B} [k \Omega] \leqslant (U_{H} [V])$] - 12 V) / J_{Y} [mA]
传输误差	≤ 0). 3 %
温度影响	≤ 0.1	% / 10 K
分辨率	≤ 0	0.1 %
剩余纹波	\leq	1 %
内部电容 C _i	_	11 nF
内部电感 Li		小到可以忽略不计
连接到具有以下峰值的		$U_i = DC 30 V$
电路	-	$I_i = 100 \text{ mA}$
		$P_i = 1 W$
电流隔离		I_{γ} (K1. 61/62) 和基本设备为单独的本安电路
检测电压	DC 840	V, 1 s
二进制模块	型号 827A.E	型号 827A. X
二进制输出端 A1,A2, 4		
信号状态为高(未响应)	导电 R = 1 kΩ +3% / -1%	\geq 2.1 mA $^{2)}$
信号状态为低(已响 应) ³⁾	已隔断 $I_R < 60$ mA	\leq 1.2 mA $^{2)}$
内部电容 C _i	_	5.2 nF
内部电感 Li	-	小到可以忽略不计
辅助电压 U _H	≤ DC 35 V	-
连接到具有以下峰值的	-	$U_i = DC 15 V$
电路		$I_{i} = 25 \text{ mA}$
		$P_i = 64 \text{ mW}$
二进制输入端 BE2		
端子 21/22 (已与基本 设备进行电流连接)		电势触点 点负载 ≤ 5 µA
端子 11/12 (已进行电 流隔离)		
信号状态 0	≪ DC 4.5 V 或打开	
信号状态 1	≥ DC	C 13 V

ARCA Regler GmbH 13 技术数据

输入电阻	$\geqslant 2$	5 kΩ
静态损坏极限	± 35 V	-
内部电容 C _i	-	小到可以忽略不计
内部电感 Li	_	小到可以忽略不计
连接到具有以下峰值的 电路	_	$U_i = DC 25.2 V$
	A1, A2, 4 , BE2 (K1. 11/12) 和基 本设备之间彼此电流隔离	A1, A2, 4 , BE2 (K1. 11/12) 和基本设备为单独的本安电路
检测电压	DC 840	V, 1 s

- 2) 电源符合 DIN EN 60947-5-6 (旧版 DIN 19234) 时的开关阈值: UH = 8.2 V; Ri = 1 k Ω 。
- 3) 基本设备损坏或无辅助电源时,此状态同样为低。

槽口启动器 模块	型号 827A.E	型号 827A.X
二进制输出端 A1、A2		
槽口启动器	SJ2-SN 或 N7S20A 型, 2 线	制接口,常闭触点功能(NC)
接口	根据 DIN EN 60947-5-6(旧版	反 DIN 19234) 连接开关放大器
内部电容 C _i	-	161 nF
内部电感 Li	-	120 µН
连接到具有以下峰值的	$U_{\overline{\kappa}\overline{\kappa}}$ = DC 8 V	$U_i = DC 15 V$
电路		$I_{\rm i}$ = 25 mA
		$P_{\rm i} = 64 \text{ mW}$
二进制输出端 4		
信号状态为高(未响 应)	$R = 1.1 k \Omega$	\geq 2.1 mA ¹⁾
信号状态为低(已响 应) ²⁾	$R = 10 k \Omega$	\leq 1.2 mA $^{1)}$
内部电容 C _i	_	5. 2 nF
内部电感 Li	-	小到可以忽略不计
辅助电压 U _H	DC 35 V	-
连接到具有以下峰值的	-	$U_i = DC 15 V$
电路		$I_i = 25 \text{ mA}$
		$P_i = 64 \text{ mW}$
电流隔离	A1, A2, 4 基本设备之间彼此电流隔离	A1, A2, 与 和基本设备为单独的本安 电路
检测电压	DC 840	V, 1 s

- 1) 电源符合 DIN EN 60947-5-6 (旧版 DIN 19234) 时的开关阈值: UH = 8.2 V; Ri = 1 k Ω 。
- 2) 基本设备损坏或无辅助电源时,此状态同样为低。

触点模块	型号 827A.E	型号 827A.X
二进制输出端 A1、A2		
极限值编码器	机械式到	开关触点
最大开关电压	AC 250 V / DC 24 V-	DC 30 V
最大开关电流	4 A	-
内部电容 C _i	_	小到可以忽略不计
内部电感 L _i	_	小到可以忽略不计

13 技术数据 ARCA Regler GmbH

连接到具有以下峰值的 电路	_	$\begin{aligned} \mathbf{U_i} &= \mathbf{DC} \ 30 \ \mathbf{V} \\ \mathbf{I_i} &= 100 \ \mathbf{mA} \\ \mathbf{P_i} &= 750 \ \mathbf{mW} \end{aligned}$
二进制输出端占		
信号状态为高(未响 应)	$R = 1.1 k \Omega$	\geq 2.1 mA ¹⁾
信号状态为低(已响 应) ²⁾	$R = 10 k \Omega$	\leq 1.2 mA $^{1)}$
内部电容 C _i	-	5.2 nF
内部电感 Li	_	小到可以忽略不计
辅助电压 U _H	≤ DC 35 V	-
连接到具有以下峰值的	-	$U_i = DC 15 V$
电路		$I_i = 25 \text{ mA}$
		$P_i = 64 \text{ mW}$
电流隔离	A1, A2, 与 基本设备之间彼此电流隔离	A1, A2, \ 和基本设备为单独的本安 电路
检测电压	DC 3150) V, 2 s

¹⁾ 电源符合 DIN EN 60947–5–6 (旧版 DIN 19234) 时的开关阈值: UH = 8,2 V; Ri = 1 k Ω 。

²⁾ 基本设备损坏或无辅助电源时,此状态同样为低。

ARCA Regler GmbH 14 故障排除

14 故障排除

诊断指南

	参见表	格		
在哪种运行模式下发生的故障?				
■ 初始化	1			
■ 手动模式和自动模式	2	3	4	5
在哪种环境以及哪种边界条件下发生的故障?				
■ 潮湿环境(例如强降雨或持续凝露)	2			
■ 振动的(振荡)阀门	2	5		
■ 撞击或冲击负载 (例如蒸汽冲击或断气阀)	5			
■ 湿润(潮湿)的压缩空气	2			
• 脏污(受固体微粒污染)的压缩空气	2	3		
什么时候发生的故障?				
■ 经常(可再现)	1	2	3	4
■ 偶发(不可再现)	5			
• 主要发生在特定运行时间后	2	3	5	

表 1

故障现象(症状)	可能的原因	补救措施
定位器保持在"RUN 1"。	从终端位置开始的初始化并且未等待最长为 1 分钟的反应时间。未连接管网压力或管网压力过低。	需要等待最多 1 分钟时间不要从终端位置开始初始化确保管网压力
定位器保持在"RUN 2"。	传动比开关和参数 2 "YAGL" 以及实际行程不一致。操作杆上的行程设置错误。压电阀没有切换(参见表格 2)。	检查设置:传动比开关以及参数 2检查操作杆上的行程设置参见表格 2
定位器保持在"RUN 3"。	• 执行机构行程时间过长	 完全打开节流阀和/或将压力 P_z 设置为允许的最大值。 可能需要使用增压器
定位器保持在 "RUN 5", 没 有达到 "FINISH" (等待时间 > 5 min)。	• 定位器 - 执行机构 - 阀门系 统中存在"松动"(间隙)	旋转执行机构:检查耦合轮上的平头螺丝是否紧固线性执行机构:检查定位器轴上的操作杆是否紧固排除执行机构和阀门之间的任何其他间隙。

表 2

故障现象 (症状)	可能的原因	补救措施
显示屏中闪烁 "CPU 测试" (约 2 秒钟闪烁一次)压电阀没有切换。	阀组中有水(由潮湿的压缩空 气造成)	• 在早期阶段,可通过在后续操作中使用干燥空气排除此故障 (必要时可在 50 到 70°C 的 调温箱中完成此操作)。

14 故障排除 ARCA Regler GmbH

在手动和自动模式下,无 法移动执行机构或只能单 向移动执行机构。	• 阀组中有湿气	• 否则进行维修
 ・ 压电阀没有切换(在手动模式下按下 △ 或 ▽-按 健时听不到轻微的"咔哒 	基本电气装置和阀组之间的螺 丝未拧紧	■ 拧紧螺丝
	• 阀组中有污物(切屑、颗粒)	• 维修或更换为新设备
声")	剧烈振动产生的连续负载会导致磨损,这种磨损可能会在电子电路板和阀组之间的触点上形成积垢。	用酒精清洁所有触点表面;必要时可弯曲阀组触点弹簧

表 3

故障现象 (症状)	可能的原因	补救措施
• 执行机构不能移动	■ 压缩空气 < 1.4 bar	• 将供气压力设置为 > 1.4 bar。
■ 压电阀没有切换(但在手动模式下按下 △或 ▽- 按键时可听到轻微的"咔哒声")。	节流阀关死(螺丝处于右侧限 位挡块处)	• 通过逆时针转动拧开节流阀
	• 阀组中有污物	• 维修或更换为新设备
压电阀在稳定自动模式 (恒定额定值)和手动模 式下不断切换。	■ 定位器 - 执行机构系统中存在 气动泄漏,在"RUN 3" (初始	• 排除执行机构和/或供给管线中 的泄漏情况
	化)下开启泄漏测试	对于完好的执行机构和密封的 供给管线:维修或更换为新设 备
	• 阀组中有污物(见上文)	• 维修或更换为新设备

表 4

故障现象(症状)	可能的原因	补救措施
• 在稳定自动模式(恒定额 定值)和手动模式下,两	填料函与阀门或执行机构之间 的静摩擦过大	■ 降低静摩擦或增大死区(参数 DEBA),直至振荡停止。
个压电阀均持续交替切 换,执行机构在某个平均	系统中存在松动(间隙)定位器 - 执行机构 - 阀门	旋转执行机构:检查耦合轮上 的平头螺丝是否紧固
值附近振荡。		• 线性执行机构:检查定位器轴 上的操作杆是否紧固。
		排除执行机构和阀门之间的任何其他间隙。
	• 执行机构过快	• 使用节流螺丝增加调节时间。
		如果需要快速调节时间,则增 大死区(参数 DEBA),直至振 荡停止。
• 定位器无法将阀门移至限	• 供给压力过低	• 增大供给压力
位挡块处(为	• 供电控制器或系统输出端上的	■ 插入负载变压器
▶ 100 % 输入信号时)	负载电压过低。	■ 选择 3/4 线制模式

表 5

故障现象(症状) 可能的原因 补救措施	
------------------------------	--

ARCA Regler GmbH 14 故障排除

• 零点偶发性移位(>3%)。	• 撞击或冲击负载导致加速度过高,从而使摩擦离合器移动 (例如:由于蒸汽管线中的"蒸汽冲击")。	修复导致冲击负载的原因。重新初始化定位器,锁定摩擦离合器和传动比开关(参见章节4.5.1 和4.5.2)
• 设备功能完全失效,显示 屏中也没有任何显示	■ 辅助电源不足(< 3.6 mA) ■ 由于振动(振荡)造成极高的 连续负载时:	• 检查辅助电源。
	电气接线端子的螺丝可能松动电气接线端子和/或电气组件可能会由于振动松脱	拧紧螺丝并用封蜡固定维修预防措施:将定位器安装到金属减震器上

15 废弃处理和回收利用 ARCA Regler GmbH

15 废弃处理和回收利用

⚠ 警告

有害健康的工作介质和辅助材料

危害人员和环境!

- ▶ 穿戴适当的防护装备
- ► 只要适用,就需收集冲洗介质或剩余介质,并对其进行废弃处理。需要特别注意死区(压力补偿装置、波纹管等)
- ▶ 遵守有关对危害健康的介质进行废弃处理的法律规定

ARCA 产品为模块化结构,可根据物质拆分并归类为以下组件。

- 电气组件
- 金属
- 塑料
- 油脂和油
- 包装材料

普遍适用:

- 油脂和油通常为对水体有害的物质,不得使其流入环境中
- 根据规定对拆除的材料进行废弃处理或根据物质对拆分的材料进行回收利用
- 遵守国家废弃处理规定

www.arca-valve.com