
Assumption-Free Anomaly Detection in Time Series 
Li Wei   Nitin Kumar  Venkata Lolla   Eamonn Keogh   Stefano Lonardi   Chotirat Ann Ratanamahatana 

University of California - Riverside 
Department of Computer Science & Engineering  

Riverside, CA 92521, USA 
{wli, nkumar, vlolla, eamonn, stelo, ratana}@cs.ucr.edu 

 

Abstract 
Recent advancements in sensor technology have made it 
possible to collect enormous amounts of data in real time. 
However, because of the sheer volume of data most of it 
will never be inspected by an algorithm, much less a 
human being. One way to mitigate this problem is to 
perform some type of anomaly (novelty / interestingness/ 
surprisingness) detection and flag unusual patterns for 
further inspection by humans or more CPU intensive 
algorithms. Most current solutions are “custom made” 
for particular domains, such as ECG monitoring, valve 
pressure monitoring, etc. This customization requires 
extensive effort by domain expert. Furthermore, hand-
crafted systems tend to be very brittle to concept drift. 
In this demonstration, we will show an online anomaly 
detection system that does not need to be customized for 
individual domains, yet performs with exceptionally high 
precision/recall. The system is based on the recently 
introduced idea of time series bitmaps. To demonstrate 
the universality of our system, we will allow testing on 
independently annotated datasets from domains as 
diverse as ECGs, Space Shuttle telemetry monitoring, 
video surveillance, and respiratory data. In addition, we 
invite attendees to test our system with any dataset 
available on the web. 
 
1. Introduction  
 

Recent advancements in sensor technology have made 
it possible to collect enormous amounts of data in real 
time. However, because of the sheer volume of data most 
of it is never inspected by an algorithm, much less a 
human being. One way to mitigate this problem is to 
perform some type of anomaly (novelty / interestingness/ 
surprisingness) detection and to flag unusual patterns for 
future inspection by humans or more CPU intensive 
algorithms. Most current solutions are “custom made” for 
particular domains, such as ECG monitoring, valve 
pressure monitoring, etc. This customization requires 
extensive effort by domain experts. Furthermore hand-
crafted systems tend to be very brittle to concept drift. 

In this demonstration, we will show an online anomaly 
detection system that does not need to be customized for 
individual domains, yet performs with exceptionally high 
precision/recall. The system is based on the recently 
introduced idea of time series bitmaps [11]. It allows 

users to efficiently navigate through a time series of 
arbitrary length and identify portions that require further 
investigation. Figure 1 illustrates the graphical interface 
of our system1. 

 

Figure 1. A snapshot of the anomaly detection 
tool. 

To demonstrate the universality of our system, we will 
allow testing on independently annotated datasets from 
domains as diverse as ECGs, Space Shuttle telemetry 
monitoring, video surveillance, and respiratory data. In 
addition, we invite attendees to test our system with any 
dataset available on the web. 

2. Background and Related Work 
 

In this section, we give brief reviews of chaos games 
and symbolic representations of time series, which are at 
the heart of our anomaly detection technique.   

2.1   Chaos Game Representations 
Our visualization technique is partly inspired by an 

algorithm to draw fractals called the Chaos game [1]. The 
method can produce a representation of DNA sequences, 
in which both local and global patterns are displayed.  

The basic idea is to map frequency counts of DNA 
substrings of length L into a 2L by 2L matrix as shown in 
Figure 2, then color-code these frequency counts. From 
our point of view, the crucial observation is that the CGR 
                                                           
1 We encourage the interested reader to visit [5] to view full 
color examples of all figures in this work. 



representation of a sequence allows the investigation of 
the patterns in sequences, giving the human eye a 
possibility to recognize hidden structures. 

 

Figure 2. The quad-tree representation of a 
sequence over the alphabet {A,C,G,T} at 
different levels of resolution. 

We can get a hint of the potential utility of the 
approach if, for example, we take the first 5,000 symbols 
of the mitochondrial DNA sequences of four familiar 
species and use them to create their own file icons. Figure 
3 below illustrates this. Note that Pan troglodytes is the 
familiar Chimpanzee, and Loxodonta africana and 
Elephas maximus are the African and Indian Elephants, 
respectively. Even if we did not know these particular 
animals, we would have no problem recognizing that 
there are two pairs of highly related species being 
considered. 

 

Figure 3. The bitmap representation of the 
gene sequences of four animals.  

With respect to the non-genetic sequences, Joel Jeffrey 
noted, “The CGR algorithm produces a CGR for any 
sequence of letters” [4]. However, it is only defined for 
discrete sequences, and most time series are real valued.   

The results in Figure 3 encouraged us to try a similar 
technique on real valued time series data and investigate 
the utility of such a representation on the data mining task 
of anomaly detection. Since CGR involves treating a data 
input as an abstract string of symbols, a discretization 
method is necessary to transform continuous time series 

data into discrete domain. For this purpose, we used the 
Symbolic Aggregate approXimation (SAX) [8], which we 
review below.  

2.2   Symbolic Time Series Representations 
While there are at least 200 techniques in the literature 

for converting real valued time series into discrete 
symbols, the SAX technique of Lin et. al. [8] is unique 
and ideally suited for data mining. SAX is the only 
symbolic representation that allows the lower bounding of 
the distances in the original space.  

The SAX representation is created by taking a real 
valued signal and dividing it into equal sized sections. 
The mean value of each section is then calculated. By 
substituting each section with its mean, a reduced 
dimensionality piecewise constant approximation of the 
data is obtained. This representation is then discretized in 
such a manner as to produce a word with approximately 
equi-probable symbols. Figure 4 shows a short time series 
being converted into the SAX word baabccbc. 

 

Figure 4. A real valued time series can be 
converted to the SAX word baabccbc. 

It has been pointed out that when processing very long 
time series, it is not necessarily a good idea to convert the 
entire time series into a single SAX word [11]. Therefore, 
for long time series, we slide a shorter window, which is 
called feature window, across it and obtain a set of shorter 
SAX words.  

Note that the user must choose both the length of the 
sliding feature window N, and the number n of equal sized 
sections in which to divide N (as we will see, there is no 
choice to be made for alphabet size). A good choice for N 
should reflect the natural scale at which the events occur 
in the time series. For example, for ECGs, this is about 
the length of one or two heartbeats. A good value for n 
depends on the complexity of the signal.  Intuitively, one 
would like to achieve a good compromise between 
fidelity of approximation and dimensionality reduction. 
As we shall see, the proposed technique is not too 
sensitive to parameter choices. 

3. Time Series Anomaly Detection 
 

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA



3.1 Time Series Bitmaps 
At this point, we have seen that the Chaos game 

bitmaps can be used to visualize discrete sequences and 
that the SAX representation is a discrete time series 
representation that has demonstrated great utility for data 
mining. It is natural to consider combining these ideas. 

The Chaos game bitmaps are defined for sequences 
with an alphabet size of four. SAX can produce strings on 
any alphabet sizes. As it turns out, many authors have 
reported a cardinality of four as an excellent choice for 
diverse datasets on assorted problems [2][3][6][7][8][9].  

We need to define an initial ordering for the four SAX 
symbols a, b, c, and d. We use simple alphabetical 
ordering as shown in Figure 5. 

After converting the original raw time series into the 
SAX representation, we can count the frequencies of SAX 
“subwords” of length L, where L is the desired level of 
recursion. Level 1 frequencies are simply the raw counts 
of the four symbols. For level 2, we count pairs of 
subwords of size 2 (aa, ab, ac, etc.). Note that we only 
count subwords taken from individual SAX words. For 
example, in the SAX representation in Figure 5 middle 
right, the last symbol of the first line is a, and the first 
symbol of the second word is b. However, we do not 
count this as an occurrence of ab. 

 

Figure 5. The generation of time series 
bitmaps. 

Once the raw counts of all subwords of the desired 
length have been obtained and recorded in the 
corresponding pixel of the grid, we normalize the 
frequencies by dividing it by the largest value. The pixel 

values P thus range from 0 to 1. The final step is to map 
these values to colors. In the example above, we mapped 
to grayscale, with 0 = white, 1 = black. However, it is 
generally recognized that grayscale is not perceptually 
uniform [10]. A color space is said to be perceptually 
uniform if small changes to a pixel value are 
approximately equally perceptible across the range of that 
value. For all images in this paper, we encode the pixels 
values to be [P, 1-P, 0] in the RGB color space.  

For bitmaps with same size, we define the distance 
between them as the summation of the square of the 
distance between each pair of pixels. More formally, for 
two n×n bitmaps BA and BB, the distance between them 

is defined as ∑∑
= =

−=
n

i

n

j
ijij BBBABBBAdist

1 1

2)(),( . 

3.2 Anomaly Detection 
We create two concatenated windows and slide them 

together across the sequence. The latter one is called lead 
window, showing how far to look ahead for anomalous 
patterns. A reasonable value would be two or three times 
the length of the feature window. The former one is called 
lag window, whose size represents how much memory of 
the past to remember. Usually, it should be at least as long 
as the lead window. We convert each window into the 
SAX representation, count the frequencies of SAX 
“subwords” at the desired level, and get the corresponding 
bitmaps. The distance between the two bitmaps is 
measured and reported as an anomaly score at each time 
instance, and the bitmaps are drawn to visualize the 
similarities and differences between the two windows.  

There are two ways to use the tool, unsupervised (one 
time series) and supervised (two time series). For 
unsupervised use, the user must specify the size of the lag 
window. For supervised use, the user must specify a time 
series file that he/she believes contains normal behavior 
for the system. For example, this could be 10 minutes of 
ECGs that are known to be normal, or a trace from a 
successful space mission.  In this case, the entire training 
time series can be imagined as the lag window.  

At each “step” of the sliding window we can 
incrementally ingress a new data point, and egress an old 
data point in constant time (updating only two pixels of 
each bitmap). Hence, the time complexity is linear in the 
length of the time series. 

4. Experimental Evaluation 
 

To demonstrate the universality of our system, we 
tested on independently annotated datasets from domains 
as diverse as ECGs, Space Shuttle telemetry monitoring, 
video surveillance, and respiratory data. Here we show 
only a subset of the experimental results due to space 
limitations. Our approach is also effective on time series 

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

abcdba
bdbadb

cbabca

3

7

Level 1 Level 2 Level 3

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

aa ab ba bbaa ab ba bb

ac ad bc bdac ad bc bd

ca cb da dbca cb da db

cc cd dc ddcc cd dc dd

a b

c d

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

0 2 3 00 2 3 0

0 1 2 10 1 2 1

1 1 0 31 1 0 3

0 1 0 00 1 0 0

5 7

3 3

5 7

3 3

abcdba
bdbadb

cbabca

3

7

Level 1 Level 2 Level 3



clustering and classification [11], but we focus on its 
utility for anomaly detection here. We urge the interested 
reader to consult [5] for large-scale color reproductions 
and additional details. 

Figure 6 illustrates a subsection of an ECG data. A 
cardiologist annotated two premature ventricular 
contractions at approximately the 0.4 and 1.1 mark, 
respectively, and a supraventricular escape beat at about 
the 1.0 mark. Our approach easily detects all the three 
anomalies. 

 

Figure 6. Top) A subsection of an ECG 
dataset. Middle) The abnormal score shows 
three strong peaks for the anomalous 
heartbeats. Bottom) The bitmaps before and 
after the third peak. 

Figure 7 shows a very complex and noisy ECG. But 
according to a cardiologist, there is only one abnormal 
heartbeat at approximately the 0.23 mark. Our tool easily 
finds it. 

 

 

Figure 7. Top) A subsection of an ECG 
dataset. Middle) The abnormal score shows a 
strong peak for the anomalous heartbeat. 
Bottom) The bitmaps before and after the 
strong peak. 

5.  Demonstration Plan 
 

Our demonstration will consist of the following three 
parts. 

• First, we will present some real-world applications in 
which our technique can be applied. These examples 
will provide the audience with insights into the task 
of time series anomaly detection. 

• Second, by using real-world datasets from diverse 
domains, we will show the experimental evaluation 
of our system. 

• Finally, we will invite audience to play the tool 
interactively themselves. The audience will be 
encouraged to test their own datasets. 

 
Reproducible Results Statement: In the interests of competitive scientific inquiry, 
all datasets used in this work are available at the following URL [5]. This research 
was partly funded by the National Science Foundation under grant IIS-0237918. 
References  
[1] Barnsley, M.F., & Rising, H. (1993). Fractals Everywhere, 

second edition, Academic Press. 
[2] Celly, B. & Zordan, V. B. (2004).  Animated People 

Textures.  In proceedings of the 17th International 
Conference on Computer Animation and Social Agents. 
Geneva, Switzerland. 

[3] Chiu, B., Keogh, E., & Lonardi, S. (2003). Probabilistic 
Discovery of Time Series Motifs. In the 9th ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 

[4] Jeffrey, H.J. (1992). Chaos Game Visualization of 
Sequences. Comput. & Graphics 16, pp. 25-33. 

[5] Keogh, E. http://www.cs.ucr.edu/~wli/SSDBM05/ 
[6] Keogh, E., Lonardi, S., & Ratanamahatana, C. (2004).  

Towards Parameter-Free Data Mining. In proceedings of 
the 10th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining. 

[7] Lin, J., Keogh, E., Lonardi, S., Lankford, J.P. & Nystrom, 
D.M. (2004). Visually Mining and Monitoring Massive 
Time Series. In proceedings of the 10th ACM SIGKDD.  

[8] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003) A 
Symbolic Representation of Time Series, with Implications 
for Streaming Algorithms. In proceedings of the 8th ACM 
SIGMOD Workshop on Research Issues in Data Mining 
and Knowledge Discovery. 

[9] Tanaka, Y. & Uehara, K. (2004). Motif Discovery 
Algorithm from Motion Data. In proceedings of the 18th 
Annual Conference of the Japanese Society for Artificial 
Intelligence (JSAI). Kanazawa, Japan.  

[10] Wyszecki, G. (1982). Color science: Concepts and 
methods, quantitative data and formulae, 2nd edition. New 
York, Wiley, 1982. 

[11] Kumar, N., Lolla N., Keogh, E., Lonardi, S., 
Ratanamahatana, C. & Wei, L. (2005). Time-series 
Bitmaps: A Practical Visualization Tool for Working with 
Large Time Series Databases. SIAM 2005 Data Mining 
Conference. 


