第80期:使用 CMG-GEM 模拟二氧化碳驱操作流程

Builder/GEM/Results 2017.10

编写人: 吴晓云

很多人了解并开始使用 CMG, 是从 STARS 开始的, 说到 IMEX 和 GEM 便无从下手了, GEM 模型要如何创建? CO2 混相驱机理要如何设置? 需要输出哪些结果? 这些是初次接触 GEM 常常遇到的, 我们先来聊一聊这些问题。

大家都有这样的共识—不同的数值模拟软件具有普遍的相似性,事实上,这种普遍的相似性在不同的模拟器之间也存在,其中 80^{~90%}的设置是相似的,区别主要集中于流体模型即 Components 部分。

CO₂ 混相驱过程中,可能发生溶解、膨胀、混相或非混相、沥青质沉积、相渗滞后、润湿反转、扩散和弥散、水溶气、液态 CO₂冷伤害、离子交换、矿物质盐析和溶解等现象。面对这么多的机理表征,大家显得无所适从,所以,把握主次才最为关键!首先,从最基础的模拟出发,溶解、膨胀,混相或非混相模拟是最重要的了,而这些机理的表征 EoS 已经为我们全权代劳了,做 CO₂驱的小伙伴们可以轻松上阵了。其次,如果通过室内实验或者现场以及流体分析,还存在沥青质沉积、相渗滞后、润湿反转等现象,我们可以在基础模型上通过一系列的关键字定义即可表征。

做 CO₂ 驱或天然气驱过程中,最小混相压力是大家关注的首要参数,也是比较纠结的一 个参数,巴不得直接把它丢给模型,达到"超过该压力,驱油百分百"的效果。但是,在实 际的驱替过程中可不是如此简单,模拟器也不是根据这个最小混相压力去触发 100%驱油效 率,而是以一种更加聪明的方式来模拟的。混相是什么?简单来说,消除界面,那就是界面 张力降为 0。GEM 中计算界面张力的参数是等张比容 (PCHOR)。而关联界面张力和驱油效率, 可以借助 IFT (界面张力) 效应来实现。那么,MMP 就不用关注了吗?也不是,MMP 有各种 经验公式和测定方法,业内比较认可和比较常用的细管实验法,虽然测定的方法也会受到细 管长度、孔、渗等各种因素的影响,但是如果我们认可最小混相压力,在 2017 版 WinProp 新增了对其的拟合功能,可以微调 ΩA 和 ΩB 以及注入气与重组分的二元交互作用系数,同 时需监测其他实验数据的拟合精度。

1

创建好模型之后,还有很关键的一点,到底我要关注 CO2 驱哪些结果呢? 输出结果是帮助我们展示各种机理和开发效果的。举个例子,热采开发我们的关注点是热带来的影响,首先是温度和降粘,那么我们肯定要输出温度场和粘度场。CO2 呢,可以降粘、改变界面张力, 我们可以输出粘度场、摩尔分数场和界面张力场展示 CO2 驱效果,更多的输出也是一样,都 是为了说明问题而服务的。如果你还是不知道哪些是必要的,可以参考一些算例或权威文献 中的出图。

初学者还会纠结一个问题, CO2驱会做了, 那 CO2吞吐怎么做呢? 相似性来帮你, 参考蒸 汽吞吐的循环井组设置(第 15 期: 如何采用井组进行蒸汽吞吐周期自动转换设置和)和 TRIGGER 设置(第 47 期: TRIGGER(触发)功能的使用方法), 只需将注入介质由蒸汽改为气 就可以了。

本文借助第 69 期讲义的流体,对 Builder 创建 CO2 驱 GEM 模型流程进行详细介绍。

第一步, 创建衰竭开采预测模型, 在基础模型中导入拟合好的流体模型*.gem,;

第二步, 创建水驱模型, 作为 CO2 开发效果的对比基础;

第三步, 创建 CO2 驱 WAG 模型, 应用 Group 进行气水交替设置;

第四步, 衰竭、水驱、WAG 开发效果对比;

涉及的主要知识点有:1使用 Group 设置气水交替模拟;2 复制井功能,常用于设置吞吐井、气水交替井或分层开采井的模拟;3 绘制等值面图。

与本期相关讲义:

第15期:如何采用井组进行蒸汽吞吐周期自动转换设置

第47期:TRIGGER(触发)功能的使用方法

第48期: STARS-Builder 软件基础操作,第64期: CMOST 操作实战之优化

第 69 期: CO2 混相驱 PVT 拟合计算,《公开课第 8 课: Results Graph 应用技巧》

目 录

1.	创建衰竭开采预测模型	3
2.	创建水驱预测模型	5
3.	创建 CO2-WAG 预测模型	6
4.	衰竭、水驱、CO2-WAG 开发效果对比	10
5.	三个模拟器模拟 CO2 驱的区别	12

1. 创建衰竭开采预测模型

本期使用的基础模型"GEM_5spot_Basic.dat"中是一个五点井网模型,创建过程可参考48期讲义,不做过多描述。Components(流体模型)部分GEM与STARS不同,STARS使用K value模拟相态平衡,所需参数较为简单,大部分皆可在Builder界面自行定义。而GEM模拟是基于状态方程(EoS)计算,所需参数复杂且抽象,通常是借助WinProp做PVT 拟合,然后输出流体模型参数,参考69期讲义。

1) 基础模型参数如下:

油藏描述	 ◆ 纵向上有 8 个小层,均为油层 ◆ 模型深度为 1800-1824m ◆ 平面渗透率和垂向渗透率为 400 mD ◆ 孔隙度为 0.24
组分定义 (稍后添加)	 ◆ 有7个拟组分 ◆ 流体模型由 WinProp 生成,参考 69 期讲义
岩石-流体	◆ 实验室测得相渗曲线
初始化	 ◆ 重力毛管力平衡法, 仅油水两相 ◆ 参考深度 1800 m, 参考压力 18000 kPa, 油水界面 1827 m
井和动态数据	 ◆ 5 □井: TT1/2/3/4 和 Injector,构成了五点井网, Injector 关井 ◆ 生产井约束条件: STL 200 m³/day, BHP 7000 kPa ◆ 将 5 □井设置为 Inner Wells 井组,方便对其进行井组控制, 参考第 15 期讲义

- 准备流体模型。在 69 期讲义基础上通过进一步的回归拟合(文件 <u>4-</u> <u>MiscLumping Reg-ff.dat</u>),并输出流体模型(文件 <u>7-GEM.gem</u>)。
- 3) 点击树视图中 Components → Import WinProp-generated Model,在弹出 对话框中选择 7-GEM.gem。因 Builder 未能识别 VSHIF1 和 TREFVS,需要 手动将两个关键字粘贴至 VSHIFT 关键字后面。如果熟悉 CMG 关键字系 统,可直接编辑*.dat 文件,将 7-gem.gem 中的关键字全部粘贴至流体描述 位置。
- 此时树视图中显示 [№] ^{Reservoir},这是因为流体模型中的组成并未导入,需 要补充定义。点击 Reservoir,在树视图下方区域找到

■ S Array Properties , 点开+, 可以看到:

÷. 🛛	Global Composition(C13toC20), *ZGLOBALC
÷ 🛛	Global Composition(C21toC30), *ZGLOBALC
÷ 8	Global Composition(C2HtoNC4), *ZGLOBALC
÷ 8	Global Composition(C8 toC12), *ZGLOBALC
÷	Global Composition(H2StoCO2), *ZGLOBALC
÷ 🛛	Global Composition(IC5toC7), *ZGLOBALC
÷ 🛛	Global Composition(N2 toCH4), *ZGLOBALC

5) 双击其中一个参数,即可打开定义界面。也可通过 Builder 主界面上方的

Specify Property,在下拉菜单找到 Global Composition(IC5toC7)等参数, 并逐个定义,OK两次。

🔳 General Pro	operty Specification						- 0	\times
Edit Specificatio	'n							
	Only for Start Time, Go to	Global C	omposition(N2 toCH4)	\sim	Use Regions / Sectors			
	Global Composition(C13toC	20)	Global Composition(C21toC30)	Global	Composition(C2HtoNC4)	Global Compositio	n(C8 toC12)	^
UNITS:								
SPECIFIED:	х		Х		х)	<	
HAS VALUES:								
Whole Grid	0.1265		0.1785	0.2069		0.1766		
Layer 1								
Layer 2								
Layer 3								
Layer 4								
Layer 5								
Layer 6								
Layer 7								
Layer 8								~
<								>
						ОК	Cancel	

Global Composition(油藏流体组成)数据就是在 WinProp 中合并后的 Composition,也可以在*.GEM 文件的开头,找到**COMPOSITION *PRIMARY,

对应一一输入。这里的组分'H2StoCO2'是在 WinProp 中合并得来的,因 H2S 含量较低,已用 CO2 的属性替换,因而本期讲义中,'H2StoCO2'即代表 CO2。

6) 另存为衰竭开采预测模型 "<u>GEM 5spot Pred.dat</u>",回到 Launcher 界面, 用鼠标将该文件拖至 GEM 模拟器,提交计算,稍后进行对比。

2. 创建水驱预测模型

在 CO2 驱效果评价中需计算增油量和换油率等开发指标,这些都是以水驱预测作为基础。 因衰竭开采预测模型压力下降较快,需能量补给,计划在 2020 年1月1日开始水驱。如何 把握注水时机,这又是另一个课题,这里不做讲解。

- 7) 启动 CMG Launcher, 用鼠标将"<u>GEM 5spot Pred.dat</u>"拖至 Builder, 并 另存为"<u>GEM 5spot Watflooding.dat</u>"。
- 8) 点击 Wells & Recurrent,双击 Wells 下的 Injector,在弹出的页面上方时间 栏选择 2020-1-1。

a) 点击 **Options**,将 Status 改成 **OPEN**,点击页面右下角 Apply;

Well Events									
displayed w	ells 5 of 5		2020-01-01	Vell: 'Injector	ŕ	at 2020-01	-01 (365.00 day)		
Name / Date	Event	^	ID & Type						
Injector				Controls	Add	l / Remove	Type / Value	Previous date	
2019-01-01	WELL		Constraints	Operating					
	INJECTOR			Status	•	Status	OPEN	2019-01-01	
	constraints		Multipliers	Fraction of time the well is		ON-TIME	1		
	injected fluid			Wallborg	Set well抯 phase productivity		SETPI	Oil	
	SHUTIN		Wellbore	pi value/multiplier			0 m3/(day*kPa)		
2020-01-01	INJECTOR			Shut in Well above Formation		MODELSHUT	OFF		
	constraints		Injected Fluid	Global Fluid Equilibration C		EQUILIBRATE	0.001 m3/day		
	injected fluid			Cap Rock Leakage Well		CRL_WELLS			
	OPEN		Workover	Numerical					
TT1			Ontions	Initialization frequency of		WELLINIT	ITER		
2019-01-01	WELL		options	Reset operating constraint a		MRC-RESET	RESET		

b) 点击 Constraints, 激活 Constraint definition, 设置 STW 800 m3/day, BHP 20000 kPa, OK。

Well Events												\times
Y displayed wells 5 of 5 2020-01-01						¶ell:	,	Injector' at 2020-01-0)1 (365.00 d	ay)		
Name / Date	Event	^	ID & Type	E	Cons	traint definition	p	revious date: 2019-01-01				
Injector					#	Constraint	_	Parameter	Limit/Mode	Value	Action	
2019-01-01	WELL		Constraints		* 1	OPERATE		STW surface water rate	MAX	800 m3/day	CONT	
	INJECTOR constraints		Multipliers		2	OPERATE		BHP bottom hole pressure	MAX	20000 kPa	CONT	٦
	injected fluid		Wallbara	•		select new	•					
2020-01-01	SHUTIN		To i con a Pluid									
	constraints		Injected Fidia									
	injected fluid OPEN		Workover		۲							>

9) 保存文件,回到 Launcher 界面,用鼠标将该文件拖至 GEM 模拟器,提交计算。

3. 创建 CO₂-WAG 预测模型

水气交替驱(Water-Alternating-Gas, 即WAG)是常见的CO2驱开发方式。WAG 驱 交替注入水段塞和气段塞,能够有效减弱由于油气粘度差而产生的气体指进,控制气窜 并延长气体突破时间,因而比较推崇。GEM 实现WAG 驱的方法有两种,Group 控制或者 Trigger 控制。这里介绍前者,后者在《第47期:TRIGGER(触发)功能的使用方法》 讲义有详细说明,见第10页实例2。

10) 启动 CMG Launcher,用鼠标将"<u>GEM 5spot Watflooding.dat</u>"拖至
 Builder,并另存为"<u>GEM 5spot WAG.dat</u>"。点击 I/O Control →
 Simulation Results Output,在 OUTSRF 部分选择输出 CO₂ 在油和气相的摩
 尔分数。OK。

Select	Variab	les for	Simul	ation	Results	File
	• • • • • • • • • • • • • • • • • • •		C	THE REPORT OF T	I THE WAY AND I HAVE	1 11 2

Key Words	Variable Description				
X 'H2StoCO2'	Mole fraction of 'H2StoCO2' in oil phase (X)				
X 'IC5toC7'	Mole fraction of 'IC5toC7' in oil phase (X)				
X 'N2 toCH4'	Mole fraction of 'N2 toCH4' in oil phase (X)				
XALL XALL	Mole fraction of all components in oil phase (XALL)				
Y 'C13toC20'	Mole fraction of 'C13toC20' in gas phase (Y)				
Y 'C21toC30'	Mole fraction of 'C21toC30' in gas phase (Y)				
Y 'C2HtoNC4'	Mole fraction of 'C2HtoNC4' in gas phase (Y)				
Y 'C8 toC12'	Mole fraction of 'C8 toC12' in gas phase (Y)				
Y 'H2StoCO2'	Mole fraction of 'H2StoCO2' in gas phase (Y)				

11) 打开 Numerical 部分,选择时间 2020-1-1,最大时间步 DTMAX 为 15.0, 保证计算气水交替时最大的时间步长不超过 15 day,保证模拟精度。OK。

[Numerical				\times
	2020-01-01 (Numerical) V				
	Keyword Description	Default	Dataset Value	Set At	^
	Timestep Control Keywords				
	Maximum Number of Timesteps (MAXSTEPS)	99999			
	Maximum Simulation Time (MAXTIME)	7305			
	Maximum Simulation Date (MAXDATE)	2039-01-01			
	Maximum Time Step Size (DTMAX)	365 day	15 day		
	Minimum Time Step Size (DTMIN)	1e-005 day	1.0e-10 day	2019-0	
	First Time Step Size after Well Change	0.01 day	0.01 day	2019-0	
	Maximum CPU Seconds (MAXCPU)				

- 12)为了方便控制,用一口注气井和一口注水井交替开关井进行气水交替模拟。
 首先注水井的位置创建一个注气井,然后进行气水交替注入设置。具体操作
 如下:点击 Wells & Recurrent → Copy Well,
 - a) 在弹出的对话框中,选择 Injectors, Next;

Copy Well Wizard. Step 1 of 6	×
Select Wells to Copy	
1 V Injector	Producers Injectors
	Match name / wildcard
	Select Deselect

- b) 复制所有的完井信息, Next;
- c) 复制所有的几何因子,包括表皮因子、井径等,Next;
- d) 复制井轨迹,因被复制井 Injector 没有井轨迹,略过,Next;
- e) 并名后缀改为_CO2, 时间 2020-1-1, Next;

Copy Well Wizard. Step 5 of 6	
New Well Name and Date	
Please note that you can still modify the name and/or date of the individual new wells in the next ste you want.	ep if
New Well Name	
I will manually enter the new well name in the next step.	
New Well Date	
O Use the original well's definition date	
● Use the date 2020-01-01 ✓	

f) 检查前面的设置,无需更改,点击 Finish,完成复制井操作。

13) 树视图中双击 Injector_CO2, 井类型设置为 INJECTOR, Group 选择 Inner Wells, Apply。

	🖪 Well Events									\times
[displayed w	ells 6 of 6		2020-01-01	~	Tell: 'Injector_CO2'	at 202	0-01-01 (365.00 day)		
	Name / Date	Event	^	ID & Type	Well definition	Previous date: <none></none>				
		injected fluid OPEN		Constraints	Name:	Injector_CO2		Edit		
	Injector_CO2			Multipliers						
	2020-01-01	WELL		Wellbore	Туре:	INJECTOR	~]		
		constraints injected fluid		Injected Fluid	Group:	Inner Wells	~	3rd or 2nd level group with n other groups attached to it	10	

14) 注气井的控制条件为 STG 1.0e6 m³/day, BHP 20000 kPa, Apply。

🛯 Well Events									\times
displayed we	ells 6 of 6	2020-01-01	~	∎∎ell: "	Injector_CO2′ at 2020-	01-01 (365.0	10 day)		
Name / Date	Event ^	ID & Type	Con:	straint definition P	revious date: <none></none>				
	constraints injected fluid	Constraints	#	Constraint	Parameter	Limit/Mode	Value	Action	
	OPEN		* 1	OPERATE	STG surface gas rate	MAX	1000000 m	CONT	ור
Injector_CO2		Multipliers	2	OPERATE	BHP bottom hole pressure	MAX	20000 kPa	CONT	
2020-01-01	WELL	W-111		select new 💌					
	INJECTOR	wellbore							
	constraints injected fluid	Injected Fluid							

15) 注入纯 CO₂。点击 Injected Fluid, 注入流体类型选择 SOLVENT,

'H2StoCO2'的摩尔分数为1, Apply。注气井设置完成。

Well Events										
displayed v	☆ displayed wells 6 of 6		2020-01-01	~	¶ell	: 'Injector_CO)2'at 2020-01-	01 (3	65.00 day)	
Name / Date	Event constraints	^	ID & Type	Injected fluid:	SOLVENT					
	OPEN				#	Component	Mole Fraction		Normalize	
Injector_CO2			Multipliers		1	H2StoCO2	1.0			
2020-01-01	2020-01-01 WELL INJECTOR constraints injected fluid		Wellbore		2	N2 toCH4	0.0			
			Injected Flui		3 C2HtoNC4 0.0	0.0				
					4	IC5toC7 0.0				
TT1			Workover		5	C8 toC12	0.0			
2019-01-01	WELL				6	C13toC20	0.0			
	constraints		Uptions		7	C21toC30	0.0			
TT2			Layer Gradient			Total:	1.0			
2019-01-01	WELL									

16) 接下来,用 Group 的方式设置气水交替控制。双击 Groups (2),

- a) 点击 Inner Wells, 在页面顶部选择气水交替时间, 2020-01-01。
- b) 点击 Cycling Group。气水交替过程中, 仅需控制注入井的交替, 生产

井保持开井状态无需控制,在 Participating Streams 中去掉 Production;

- c) WAG 分为注气和注水两个阶段, NPARTS 改为 2。第一阶段(Value 1 列)注气, 第二阶段(Value 2 列)注水;
- d) 激活注入速度设置。注水量分别为0和800(单位自动填写,无需输入),注气量分别为1.0e6和0;
- e) 激活 Other Options 的时间,注气、水时间段均为 90 day,起始时间步
 长均为 0.1 day;
- f) 如需设置段塞数,可激活最后一个选项 Tot Number,这里持续气水交 替,不设置该值。OK。
- 17) 气水交替模型设置完成,检查水气交替注入设置是否正确。保存文件,将该 文件拖至 GEM 模拟器计算。

Group Even	ts					$ \Box$ \times
		2020-01-01	✓ 2nd level group	'Inner Well	s'at 2020	1−01−01 (365.00 da
Name / Date	Event	Definition	Participating Streams (CYCLESTREAMS):	Productio	n 🔽 Water Inje	ection
Field	CROUR	Production		Gas Inject	tion Solvent Ir	ijection
Inner Wells	GROUP	Triection	Cycle Part Number (NPARTS): 2	Oil Injectio	in STF Injec	tion
2019-01-01	GROUP		Event: Define Cycling Group Control	✓ ✓ Edit Event		
2020-01-01	GCONCYCLE	Multipliers	Sub-keyword	Edit	Value 1	Value 2
		Monitoring	Stream Target Types		J	
		Apportionment	Production	_	STO - Stoc	STO = Stoc
		Guide Rates	Water Injection		STW - St 💌	STW - St 💌
		Autodrill	Gas Injection		STG - St 💌	STG - St 💌
			Stream Maximum Rates	Add/Re		
		Mecycling	Production		0 m3/day	0 m3/day
		Manifolds	Water Injection		0 m3/day	800 m3/day
		Options	Gas Injection		1e+006 m3/day	0 m3/day
		Cycling Group	Inj Stream Voidage Repl	Add/Re		
		Comments	Water Injection		0	0
			Gas Injection		0	0
		-	Eax Cun Production/Injec			
			Production	Add/Re	0 m3	0 m3
			Water Injection	□ Add/Re	0 m3	0 m3
			Gas Injection	Add/Re	0 m3	0 m3
			Max Bottom Hole Pressure			
			Water Injection	Add/Re	0 kPa	0 kPa
			Gas Injection	□ Add/Re	0 kPa	0 kPa
			Win Inj Bate for Cycle S	-		
			Water Injection	Add/Re	0 m3/day	0 m3/day
			Gas Injection	Add/Re	0 m3/day	0 m3/day
			Other Options			
			Max Cycle Part Duration	Add/Re	90 day	90 day
			Starting Time Step Size	Add/Re	0.1 day	0.1 day
			Min Bottom Hole Pressure	Add/Re	0 kPa	0 kPa
			Min Oil Rate for Cycle Switching	Add/Re	0 m3/day	0 m3/day
			Min Depletion Index for Cycle	Add/Re	0	0
			Tot Number of Cycles Have To	Add/Re	0	

4. 衰竭、水驱、CO2-WAG 开发效果对比

以上即为 CO₂ 驱模拟的一套完整流程,可参考第 64 期讲义, 通过 CMOST-OP (参数 优化)功能实现注采参数的优化。这里我们对初步的方案进行开发指标对比。

- 18) 在 Launcher 界面,用鼠标将 GEM_5spot_pred.irf 拖至 Results Graph 模块。 点击 File → Open CMG Simulation Results Files,在弹出的对话框中用 Ctrl 选择 GEM_5spot_Watflooding.irf 和 GEM_5spot_WAG.irf 两个文件, 这样可同时绘制三个结果文件的曲线。
- 19) 点击 [▲] 加载曲线,在弹出的对话框中,添加多个打开文件(Add from multiple open files)的井组(GROUP)曲线,在 Parameters 中,使用 Ctrl+ 鼠标左键选择日产油(Oil Rate SC)和累产油(Cumulative Oil SC), OK。

Results Graph - Add Curve	S	×							
Cumulative	Dil SC vs. Time	•							
File:		Origin Type:							
gem_5spot_pred.irf	~	Group 🗸							
Add from multiple open files									
○ X AXIS: Time									
Y AXIS: Cumulative Oil SC									
Parameters:		Components:							
Cumulative Oil Mass\$C SC	^								
Cumulative Oil Moles\$C SC									
Cumulative Oil SC									
Cumulative WOR SC	v								
Cumulative MITC Massacc CC									
Origins: Default-Group-INJ Default-Group-PRO Field-INJ Field-PRO Inner Wells-INJ Inner Wells-PRO									
Choose Y Axis	Add Block F	Property Vs. Time							
Plot On Y1 Axis									
O Plot On Y2 Axis	O Plot On Y2 Axis Add Difference Property								
O Plot On Y3 Axis	reate Fluid Co	ntact Depth Vs. Time							
O Plot On Y4 Axis OK Cancel									

- 20) 在弹出的对话框中,选中另外两个文件,这样同时绘制三个文件的累产油曲 线进行不同开发方案的对比。
- 21)以产油量来看,WAG 能够明显提高水驱的原油采出程度。参考《公开课第8 课: Results Graph 应用技巧》,可进行曲线美化等操作。

22)通过输出 CO₂在油相中的摩尔分数,可查看其动态变化过程。在 Launcher 界面,用鼠标将 GEM_5spot_WAG.irf 拖至 Results 3D 模块。点击下拉属性 菜单找到 Oil Mole Fraction (H2StoCO2)。选择层位,拖动时间条,可以查 看任意时间任意平面或剖面图。

23) 绘制 CO2 在油相中摩尔分数的等值面图。

a) 首先选择 3D 显示,这里有两个 3D 选项,我们选择 Legacy 传统模式;

Image:		File	View	Tools	Window	Help									
3D View (Legacy ~ Plane 1 of 1 Block Fill ~ Oil Mole Fraction(H2StoCO2) ~		2 [3 %	Þ 6	n 🛃 👌) 昌 /	8 23	📮 67	Whole	Page	-	P (÷ K	P 🕻
Block Fill V Oil Mole Fraction(H2StoCO2) V 2035-01-01 V		3D V	iew (Leg	acy ~	.			Plane	1 of 1		1 1		1 1	1 1	1 1
	Block Fill 🗸 🗸				Oil Mole Fra	ction(H2S	StoCO2)			\sim	2035-	-01-01	~	K	•

- b) 在主窗口,鼠标右键 → properties,点击 Grid,去掉 Show Grid 显示;
- c) 点击 3D setting,在右下角 Transparency 选择合适的透明度 0.9,0代表完全不透明,1代表全透明。
- d) 设置等值面。点击 Isosurfaces, 右侧窗口中选择要显示的等值面属性和数值, 这里设置了三个取值。

CO2驱模拟过程中涉及的机理较多一IFT 效应、滞后、CO2在水中的溶解、 润湿反转、扩散和弥散、沥青质沉淀等等。在模拟的过程中,不需要同时考虑 所有的机理,可以找一个具有代表性的模型来分别模拟,分析每个机理的必要 性,然后在模型中加以体现。

5. 三个模拟器模拟 CO2 驱的区别

CO2 驱油作为一项较为成熟的三采技术,在国内外已经得到了普遍地应用,

同时 CO₂ 作为温室气体,从经济社会健康发展的角度上,CO₂ 埋存也受到越来越 多的关注,不管是 CO₂-提高采收率(EOR)和地质封存(CCS),CMG 软件都可 以轻松模拟。

对于 CO₂ 驱油的模拟, IMEX、STARS 和 GEM 三个模拟器均可以模拟。不同模拟器的区别都集中于对流体组分的描述和表征上, IMEX 黑油模拟器是使用 PVT 表插值计算, STARS 热采化学驱模拟器使用 K 值(相平衡常数)计算, 而 GEM 组分及非常规模拟器是使用 EOS(状态方程)计算, 因而有不同的适用性。 可通过以下的规则, 初步挑选适合的模拟器:

- 1. 如果 CO2 驱过程中可实现混相或非混相, 推荐使用 GEM:
 - a) 对于组分的凝析(中间烃组分由气相中凝析到油相)和蒸发(中间烃 组分由油相中蒸发到气相),GEM 表征更加精准;
 - b) GEM 可以模拟 CO₂-EOR 和 CO₂-CCS 中的诸多现象,例如 IFT 效应、滞后、CO₂ 在水中的溶解、润湿反转、液态 CO₂ 冷伤害、扩散和弥散、地球化学作用、盖层泄漏等等;
 - c) GEM 是唯一一款款能够模拟"LSWI(低矿化度水驱)+混相+泡沫 +ASP(三元复合驱)"混合 EOR 过程的数值模拟软件。
- 如果 CO₂ 驱替是非混相(拟混相)或一次接触混相,也可使用 IMEX; IMEX 优势也很明显,它是三个模拟器中计算速度最快的一个。
- 3. 如果模拟"CO₂+N₂+蒸汽"开发, 需要加上对蒸汽的模拟, 使用 STARS。