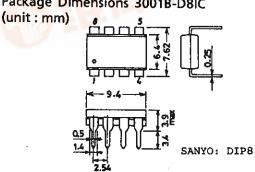
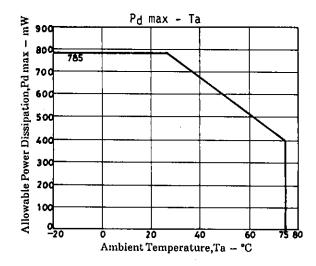
Monolithic Digital IC

No.2062B

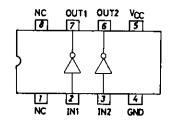
LB1267


2-Channel, High-Current, Low-Saturation Driver Array

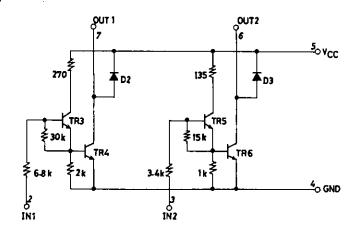
Features and Functions


- · 2-channel magnet driver
- High current (2.0A max.) and low saturation voltage (1.5V)
- · On-chip spark killer diodes

Absolute Maximum Ratings at	Γa=25°C			unit	
Maximum Supply Voltage	V _{CC} max	x	8.0	V	
Output Supply Voltage	V_{OUT}		10.0	V	
Input Supply Voltage	V_{IN}		12.0	V	
Output Current	I_{OUT1}	ton≤50ms,duty=20%, solenoid drive stage (ch1)	1.0	A SG-C	
	I_{OUT2}	ton \leq 50ms, duty = 5%, motor drive stage (ch2)	2.5	A	
Spark Killer Diode	I _{FSM1}	$t \le 5 \text{ms,duty} = 5\%$	1.0	Α	
Forward Current		solenoid drive stage (ch1)			
	I _{FSM2}	$t \leq 5$ ms, duty = 5%,	2.5	Α	
		motor drive stage (ch2)			
V _{CC} Instantaneous Flow-Out Current	I_{CCP}	$t \le 5 \text{ms,duty} = 5\%$,	3.0	Α	
GND Pin Flow-Out Current	$I_{ m GND}$	$t \leq 5 \text{ms,duty} = 20\%$	3.0	Α	
Allowable Power Dissipation	Pd max		785	mW	
Operating Temperature	Topr		-20 to +75	°C	
Storage Temperature	Tstg		-40 to + 125	°C	
Allowable Operating Range at Ta = 25°C				unit	
Supply Voltage	V _{CC}		3.0 to 7.0	V	
Input 'H'-Level Voltage	V_{IH} I_C	$_{\rm OUT}$ =300mA	3.0 to 11.0	V	
Input 'L'-Level Voltage	V_{IL} I_{C}	_{OUT} ≦100μA	-0.3 to +0.7	V	


Package Dimensions 3001B-D8IC

Electrical Characteristics at Ta = 25°C			min	typ	max	unit
Output Voltage	v_{oh1}	$V_{IN} = 4.5 V, V_{CC} = 5.0 V,$			0.65	V
		$I_{OUT} = 500 \text{mA (ch1)}$				
	V_{OH2}	$V_{IN} = 6.0V, V_{CC} = 7.0V,$			1.4	\mathbf{V}^{\cdot}
		$I_{OUT} = 1000 \text{mA} \text{ (ch1)}$	•			
	V_{OH3}	$V_{IN} = 3.0 V, V_{CC} = 3.0 V,$			0.25	V
		I _{OUT} =300mA (ch2)				
	V_{OH4}	$V_{IN} = 4.5 V, V_{CC} = 5.0 V,$		0.5	0.7	V
		I _{OUT} =1000mA (ch2)				
	V_{OH5}	$V_{IN} = 6.0 V, V_{CC} = 7.0 V,$		1.0	1.5	V
		$I_{OUT} = 2000 \text{mA (ch2)}$				
Input Current	I_{IN1}	$V_{IN} = 6.0V \text{ (ch1)}$			1.0	mΑ
	I_{1N2}	$V_{IN} = 6.0V \text{ (ch2)}$			2.0	mA
Power Source + Output	I_{OFF}	$V_{IN} = 0.5 V, V_{OUT} = V_{CC} = 6.0 V$			30	μA
Leakage Current						
Spark Killer Diode	V_{F1}	$I_F = 1000 \text{mA (ch1)}$			3.0	V
Forward Voltage	V_{F2}	$I_F = 2000 \text{mA (ch2)}$			3.0	V
Output Sustain Voltage	$V_{O(sus)}$	$I_{OUT} = 400 \text{mA}$	10			V



Pin Assignment

Note) Do not use NC pin.

Equivalent Circuit

Unit (resistance: Ω)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.