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We extensively test a recent protocol to demonstrate quantum fault tolerance on three systems:
(1) a real-time simulation of five spin qubits coupled to an environment with two-level defects,
(2) a real-time simulation of transmon quantum computers, and (3) the 16-qubit processor of the
IBM Q Experience. In the simulations, the dynamics of the full system is obtained by numerically
solving the time-dependent Schrödinger equation. We find that the fault-tolerant scheme provides
a systematic way to improve the results when the errors are dominated by the inherent control and
measurement errors present in transmon systems. However, the scheme fails to satisfy the criterion
for fault tolerance when decoherence effects are dominant.
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I. INTRODUCTION

A functional universal gate-based quantum computer
requires a very high level of precision in implementing the
quantum gates. In particular when the devices become
bigger, it proves difficult to maintain this high level of
qubit control [1–5] or to satisfy the requirements needed
for a computing device [6]. To overcome these limita-
tions, the most prominent solution is provided by the
theory of fault-tolerant quantum computation [7–9].

However, despite many experiments on quantum codes
[10–14], it has still remained an open question how much
a practical application can profit from a full fault-tolerant
protocol. Therefore, Gottesman proposed a test [15] that
uses four physical qubits to encode two logical qubits, in
combination with a criterion for a successful demonstra-
tion of fault tolerance, requiring that

All encoded circuits of some representative set
perform better than the corresponding bare,
unencoded circuits.

The underlying error-detecting four-qubit code [16–18]
has been implemented with ion-trap qubits [19] and on
IBM’s five-qubit processor [20–22]. Each of these experi-
ments reports a successful result, but none explicitly tests
the proposed fault-tolerance criterion.

In this paper, we report on an extensive test of the
fault-tolerance criterion for three complementary sys-
tems. System (1) consists of five spin qubits coupled
to an environment at a given temperature. We consider
various weak- and strong-coupling strengths and various
temperatures. This system serves as a general model to
study decoherence [23–25]. System (2) is an upscaled ver-
sion of the real-time circuit-Hamiltonian simulation used
in [5] comprising five transmons and six resonators. Sys-
tem (3) is the physical 16-qubit device ibmqx5 provided
by IBM [4]. We find very good agreement between the

latter two systems for the proper set of optimized gate
pulses including measurement errors.

The real-time dynamics of both system (1) and (2)
are studied by numerically solving the time-dependent
Schrödinger equation (TDSE) with ~ = 1,

i
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 , (1)

where H(t) is the time-dependent model Hamiltonian
and |Ψ(t)〉 represents the state of the device at time t.
Note that the computer simulation is a deterministic pro-
gram that always produces the same mathematical solu-
tion |Ψ(t)〉, from which we can compute any physically
relevant quantity (such as reduced density matrices of
smaller subsystems with non-unitary dynamics) without
the need of sampling events. A simulation at this level
goes, by definition, beyond perturbative studies, mas-
ter equations, and assumed Markovianity or completely-
positive trace-preserving maps [26–28].

We find that, despite the goal of quantum error cor-
rection, the fault-tolerant scheme fails to satisfy the suc-
cess criterion under the influence of decoherence errors
in system (1). However, our study suggests that fault-
tolerant schemes can systematically improve the perfor-
mance with respect to the natural control and measure-
ment errors dominating the transmon systems (2) and
(3).

This paper is structured as follows. In Sec. II, we give
a brief overview of the theory of quantum fault tolerance
and the protocol that we study. Section III contains the
results for system (1). In this system, there are no control
errors, allowing us to assess the performance of the fault-
tolerant protocol in the presence of decoherence errors
only. In Sec. IV, we present the transmon simulation
model, i.e. system (2). This system allows us to study
the protocol’s performance under inherent control and
measurement errors. Subsequently in Sec. V, we present
experimental results for system (3). This section also
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contains a comparison with systems (1) and (2), showing
that IBM’s transmon qubits are not dominantly affected
by decoherence errors and can thus benefit from the fault-
tolerant protocol. Finally, conclusions from our study of
all three systems are given in Sec. VI.

II. FAULT TOLERANCE

In the framework of quantum fault tolerance, logical
qubits are encoded in multiple physical qubits to allow
for the detection and correction of errors. This concept
inevitably relies on a mathematical model for the errors
that are supposed to happen in a physical quantum pro-
cessor. Simple versions of these models are based on
discrete, uncorrelated single-qubit errors or the possibil-
ity to describe the errors within the quantum operations
formalism [29], while more sophisticated studies consider
non-Markovian errors in a general Hamiltonian frame-
work [30–34]. The results of these studies are so-called
threshold theorems, stating that as long as a certain pa-
rameter in the model is below a certain threshold, arbi-
trarily long quantum computation is possible.

However, as these threshold theorems are only valid
within the mathematical model for the errors, it is
unclear whether a particular quantum error-correcting
scheme is beneficial in an actual application. For in-
stance, the thresholds are usually expressed in terms of
the diamond norm [35], which is experimentally inacces-
sible. Although progress has been made to relate this
quantity to the average gate fidelity [36, 37], recent stud-
ies have demonstrated that this fidelity, too, cannot be
measured in a physical quantum information processor
[38]. In fact, it was shown in two independent studies
that none of these error metrics can reliably predict the
performance of quantum gates in a practical application
[5, 28].

The fault-tolerant scheme that we test in this study
was explicitly designed to apply to small quantum com-
puters [15]. It replaces a bare two-qubit circuit with
an encoded four-qubit circuit and an additional ancilla
qubit. In this paper, the term circuit is defined to in-
clude both an initial-state preparation and a sequence
of gates. In particular, we consider the initial states
|00〉 , |0+〉 = |00〉+|01〉 , and |Φ+〉 = |00〉+|11〉 (up to nor-
malization). In the encoded circuits, these states are rep-
resented by entangled four-qubit states (see Appendix A
for their definitions and preparation circuits). Along with
the encoding of states, there is a set of encoded gates to
build a quantum circuit. In the present case, this set
is given by {X1,X2,Z1,Z2,HHS,CZ}, where X1 and X2
denote bit-flip gates, Z1 and Z2 denote sign-flip gates,
HHS denotes the Hadamard gate on each qubit followed
by swapping the qubits, and CZ denotes the controlled-
phase gate [29]. A full specification of how all bare and
encoded circuits are implemented in the fault-tolerant
scheme is given in Table III and Table IV in Appendix A.

The aim is to compare the performance of a bare circuit

TABLE I. List of the selected 15 circuits to illustrate the
difference between bare and encoded versions (see Appendix B
for a list of all 465 tested circuits). The first column contains
sets of three circuit IDs labeling the circuits in the second
column, which consist of particular sets of gates operating
on three initial states |i〉 ∈

(
|00〉 , |0+〉 , |Φ+〉

)
, enumerated in

this order.

ID Circuit

0-2 |i〉
240-242 X1 X1 X1 X1 X1 |i〉
216-218 CZ CZ CZ CZ CZ |i〉
171-173 CZ X1 X2 Z1 Z1 X1 X1 Z1 Z1 Z2 |i〉
270-272 HHS CZ HHS CZ HHS CZ HHS CZ HHS CZ |i〉

with that of an encoded circuit for a representative set
of circuits. To find such a set, we applied the procedure
suggested in [15] for the maximum circuit length T = 10,
the repetition parameter RP = 6, and the periodicity
P = 3, yielding 465 circuits. In this paper, we focus on
the results for a selection of 15 circuits (see Table I) that
we consider representative of the performance of all 465
tested circuits (cf. Appendix B).

Evaluating the performance of the circuits is done as
follows. For the bare versions, a final measurement of
the qubits produces a distribution pbareq3q4 of two-bit strings
q3q4. For the encoded versions, the same measurement
produces a distribution of five-bit strings q0q1q2q3q4. The
encoding scheme then dictates that if the ancilla qubit q0
is 1 or if the bit string q1q2q3q4 includes an odd number
of 1’s (meaning that it does not correspond to an encoded
basis state [15]), it is discarded. The ratio of bit strings
that are not discarded is called the postselection (PS)
ratio r. These selected bit strings then constitute a new
distribution pencq3q4 , normalized by the PS ratio r. Both
bare and encoded distributions can be compared to the
theoretical distribution ptheoryq3q4 that an ideal gate-based
quantum computer produces. The appropriate measure
to compare these distributions is the statistical distance
[36]

Dbare =
1

2

∑
q3q4

∣∣pbareq3q4 − p
theory
q3q4

∣∣ , (2)

Denc =
1

2

∑
q3q4

∣∣pencq3q4 − p
theory
q3q4

∣∣ . (3)

In terms of these quantities, Gottesman’s success crite-
rion for fault tolerance is fulfilled if Denc < Dbare for all
circuits under investigation.

Mathematical motivations suggesting a better perfor-
mance of the encoded circuits are (1) the added redun-
dancy in combination with postselection and (2) the fact
that an encoded circuit needs two-qubit gates exclusively
for the initial-state preparation. However, only practical
tests such as the one performed in this paper can tell
whether fault-tolerant schemes can improve the perfor-
mance.
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III. SPIN QUBITS COUPLED TO AN
ENVIRONMENT

System (1) consists of 5 + NE two-level systems. The
subsystem with the first five two-level systems represents
the spin qubits of the quantum computer, and the re-
maining NE two-level systems constitute the environ-
ment. This model is motivated by the experimental ob-
servation that in recent superconducting quantum pro-
cessors, two-level systems formed by material defects con-
stitute a major source of decoherence caused by the en-
vironment [25, 39, 40].

We consider the system depicted in Fig. 1. The five
qubits have an all-to-all coupling. Each qubit is con-
nected to one two-level system in the environment, which
is represented by spins organized on a ring. The Hamil-
tonian describing the whole system reads

H = HQ +HE + λHQE (4)

where the Hamiltonians HQ, HE , and HQE describe the
quantum computer, the environment, and the interaction
between both, respectively. The parameter λ controls the
coupling strength between the quantum computer and
the environment. The Hamiltonians HQ, HE , and HQE

given in Eq. (4) read

HQ = −
4∑

n=0

∑
α=x,z

hαnσ
α
n −

4∑
n,m=0

Gxnmσ
x
nσ

x
m, (5)

HE = −
NE+4∑
n=5

∑
α=x,y,z

Jαn σ
α
nσ

α
n+1, (6)

HQE = −
4∑

n=0

∑
α=x,y,z

Kα
njnσ

α
nσ

α
jn , (7)

where σαn for α = x, y, z denote the Pauli matrices for
qubit n. Each qubit n ∈ {0, . . . , 4} is connected to
a randomly chosen qubit jn ∈ {5, . . . , NE + 4} in the
environment (all jn are different) with a random cou-
pling strength λ|Kα

njn
| ≈ λ × 2 GHz, tunable through

the parameter λ. In the environment Hamiltonian HE ,
the couplings Jαn are chosen randomly from [−J, J ] for
J = 2 GHz.

Implementing the quantum gates through piecewise
constant parameters in Eq. (5) eliminates any control
and measurement errors. Therefore, with this implemen-
tation, we can exclusively study the effect of decoher-
ence errors because the only source of errors is the in-
teraction between the qubits and the environment. The
comparison with the results of systems (2) and (3) then
allows us to understand the difference between decoher-
ence errors and control or measurement errors when us-
ing a fault-tolerant protocol. In Appendix C 1, we give
the full specification of the parameters hαn and Gxnm that
enter in HQ (see Eq. (5)). In the absence of coupling
to the environment, the whole system evolves in time
like an ideal quantum computer. Running all quantum

FIG. 1. (Color online) Schematic representation of the sys-
tem of five spin qubits (blue) coupled to an environment (red),
described by the model Hamiltonian given in Eqs. (4)–(7).
The five qubits representing the quantum computer have a
tunable all-to-all connectivity (dashed lines). The two-level
systems in the environment form a ring with an always-on
coupling between nearest neighbors and to the qubits of the
quantum computer (solid lines). The latter is controlled by
the coupling strength λ.

circuits on both system (1) for λ = 0 and the Jülich
universal quantum computer simulator [41] yields identi-
cal results, validating the correct implementation of the
quantum gates.

We solve the TDSE given in Eq. (1) with the piecewise
time-independent Hamiltonian given in Eqs. (4)–(7) to
machine precision by means of the Chebyshev polynomial
representation of exp(−itH) [42–44]. The environment is
prepared at an inverse temperature β using the random-
state technology [44, 45].

To understand how λ affects the qubit coherence, we
estimate the decoherence time T2 by preparing the qubit
along the positive x axis, evolving it in the presence of
the environment, and fitting a damped oscillation to the
decay of its projection on the x axis; see [46] for more de-
tails on this procedure. These experiments are performed
at inverse temperature β = 0 to produce the worst-
case decoherence times. We find that Tλ2 ≈ 3.7 ns/λ2

(data not shown) and, specifically, Tλ=0.1
2 ≈ 370 ns and

Tλ=0.01
2 ≈ 4× 104 ns. In particular, the decoherence

time Tλ=0.01
2 is much larger than the time needed to

execute a quantum circuit in this model (cf. Table VI
in Appendix C 1), which supports the interpretation of
λ = 0.01 representing a very weak coupling between the
ideal quantum computer and the environment.

In Fig. 2, we present results for the statistical distances
Dbare and Denc (see Eqs. (2) and (3)) and the PS ratio r
for the circuits listed in Table I. The three cases shown
in Fig. 2(a), (b), and (c) are representative of the transi-
tion from very weak coupling λ = 0.01 to strong coupling
λ = 0.2 between the qubits and the environment. For the
weakest coupling (see Fig. 2(a)), the statistical distances
for both bare and encoded circuits are nearly zero, and
the postselection ratios r ≈ 1. This shows that in this
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FIG. 2. (Color online) Test of the fault-tolerance criterion
in system (1) for different coupling strengths (a) λ = 0.01,
(b) λ = 0.1, and (c) λ = 0.2 between the qubits and the en-
vironment. Shown are the statistical distances to the ideal
result for the selected bare (dashed red line) and encoded
(solid green line) circuits as defined in Eqs. (2) and (3), and
the postselection ratios (blue dots). All plotted quantities are
dimensionless. The simulations were done for inverse temper-
ature β = 1 and environment NE = 20. Lines connecting the
data points are guides to the eye.

case, both bare and encoded versions perform almost per-
fectly (i.e. both produce the ideal result used in Eqs. (2)
and (3)). This observation also demonstrates the correct
implementation of the quantum computer by means of
the model defined by Eqs. (4)–(7).

Increasing the coupling strength λ leads to a stronger
influence of decoherence errors on the operation of the
quantum computer. Accordingly, in Fig. 2(b) and (c), it
can be seen that the statistical distances of both bare and
encoded circuits increase. Interestingly, one can always
find circuits for which the bare version outperforms the
encoded version. In particular, every third circuit start-
ing from circuit ID 0 shows a strong increase in Denc.
These circuits correspond to the encoding of the state
|00〉. The physical reason behind the sensitivity of these
circuits is that the encoding circuit for |00〉 includes the
largest number of two-qubit gates (see Table III in Ap-
pendix A). These two-qubit gates typically take a longer
time to execute than single-qubit gates [12, 19, 47] (see
also Table VI in Appendix C 1). Hence, the entangling
two-qubit gate is the most sensitive gate even when no
control errors, but only decoherence errors, are present.
The only exception is the circuit with ID 270, which al-
ways yields Dbare ≈ Denc ≈ 0 (see Fig. 2). The rea-
son is that the execution time of this circuit is so long
that the interaction with the environment leads to a uni-
form distribution of all five-qubit states in the quantum
computer, which accidentally matches the ideal output
distribution (cf. Table I).

A summary of the performance for various intermedi-
ate coupling strengths λ ∈ [0.01, 0.2] is given in Table II.
Interestingly, the percentage P of encoded circuits per-

TABLE II. Percentage P of the circuits from Table I for which
the encoded version performs better than the bare version, as
a function of the coupling strength λ between the qubits and
the environment. The coupling strengths range from very
weak to strong coupling. The simulations were done for in-
verse temperature β = 1 and environment size NE = 20.

λ 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

P 80% 87% 73% 73% 67% 67% 53% 53% 53%

forming better than the bare circuits is not a monotonous
function of λ. For instance, the largest value of P is found
at λ = 0.025 instead of λ = 0.01. However, for such a
weak coupling, both bare and encoded circuits perform
nearly perfectly (cf. Fig. 2(a)).

In addition to the results shown in Fig. 2 and Table II,
we have studied the performance of the circuits for dif-
ferent environment sizes NE ∈ {5, 20, 27} (see Fig. 9 in
Appendix C 1) and inverse temperatures β ∈ {0, 1, 5}
(see Fig. 10 in Appendix C 1), each of which yields re-
sults with the characteristic features resembling those in
Fig. 2(b). This means that in all analyzed regimes, there
are always some encoded circuits that perform worse than
their bare equivalents. In other words, we did not find
any case that passes the fault-tolerance test.

One may ask whether this result violates the threshold
theorems proven in [30–33], which obviously consider a
Hamiltonian similar to Eqs. (4)–(7). The answer is that
in the threshold theorems, the required value of λ is still
orders-of-magnitude smaller than the ones we studied.
Yet, already for λ = 0.01 (see Fig. 2(a)), both bare and
encoded circuits perform almost perfectly and encoding
still makes the result worse in some cases. We conclude
that using a fault-tolerant protocol such as the one sug-
gested in [15] to overcome errors in a system dominated
by decoherence errors from two-level defects is not nec-
essarily helpful.

IV. TRANSMON SIMULATION

System (2) is defined by the circuit Hamiltonian for
Ntr = 5 superconducting transmon qubits coupled by
Nres = 6 transmission-line resonators [48, 49], a sys-
tem that can be used to model IBM’s publicly acces-
sible quantum processors [4, 5]. The simulated system is
schematically shown in Fig. 3 as a subset of the 16-qubit
device ibmqx5 [4].

The full Hamiltonian used in the transmon simulation
reads

H = Htr +Hres, (8)

Htr =
∑
i

[
4ECi(n̂i − ngi(t))2 − EJi cos ϕ̂i

]
, (9)

Hres =
∑
r

Ωrâ
†
râr +

∑
r,i

Grin̂i(âr + â†r), (10)



5

FIG. 3. (Color online) Schematic image showing the five
transmon qubits and six resonators described by the Hamil-
tonian given in Eqs. (8)–(10). The system represents a subset
of the 16-qubit device ibmqx5 [4] with an additional resonator
r5 to enable the implementation of all bare and encoded cir-
cuits. Without this resonator, the encoded circuits with initial
state |00〉 cannot be fault-tolerantly implemented [15].

where i = 0, . . . , Ntr−1 enumerates the transmon qubits
with capacitive energies ECi, Josephson energies EJi,
number operators n̂i, and superconducting phase opera-
tors ϕ̂i. The resonators are labeled by r = 0, . . . , Nres−1
and are described by their raising and lowering operators
â†r and âr, respectively. Their frequencies are given by Ωr
and the capacitive coupling strength between transmon
i and resonator r is denoted by Gri. Quantum gates on
the transmons are implemented through microwave volt-
age pulses represented by ngi(t) [5]. A specification of
all device parameters and pulse shapes is given in Ap-
pendix C 2.

We simulate the transmon computer model defined
in Eqs. (8)–(10) by solving the TDSE given in Eq. (1)
with the time-dependent Hamiltonian in Eq. (8) using a
second-order Suzuki-Trotter product-formula algorithm
[5, 50, 51] with time step τ = 0.001 ns. The simulation
includes as many higher levels in the transmons and the
resonators as necessary to describe the dynamics of the
system accurately (see Appendix C 2 for more informa-
tion). The device parameters in Eqs. (8)–(10) and opti-
mized gate pulses ngi(t) are chosen such that they repre-
sent a subset of five transmons and five resonators from
the 16-qubit device ibmqx5 [4, 47, 52]. Additionally, a
sixth resonator r5 is included in the model (see Fig. 3) to
extend the connectivity such that all circuits of the fault-
tolerant scheme can be implemented. The additional res-
onator solves the problem faced in [20], where the origi-
nal fault-tolerant encoding could not be implemented and
an alternative encoding was used which, although fault-
tolerant in theory, did not pass the fault-tolerance test
on the IBM device.

The results of the fault-tolerance test are shown in
Fig. 4 for two different gate sets. Both gate sets use
Gaussian microwave pulses driven at a certain drive fre-
quency f to implement the quantum gates (see Eq. (C1),
Table IX, and Table X in Appendix C 2 for the individual
parameters resulting from the pulse optimization). For
the first gate set, this drive frequency was set to the re-
spective qubit frequency for each qubit. As can be seen
in Fig. 4(a), the performance is equally good for both
bare and encoded circuits. The fault-tolerance criterion
Denc < Dbare is not satisfied.

The second gate set has been obtained by additionally
optimizing the drive frequencies of the microwave pulses.
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FIG. 4. (Color online) Test of the fault-tolerance criterion in
system (2), i.e., the real-time transmon simulation for differ-
ent optimized gate sets (a) without frequency tuning, (b) with
frequency tuning, and (c) with frequency tuning and measure-
ment error p = 0.08. Shown are the statistical distances to
the ideal result for the selected bare (dashed red line) and en-
coded (solid green line) circuits as defined in Eqs. (2) and (3),
and the postselection ratios (blue dots). All plotted quanti-
ties are dimensionless. Lines connecting the data points are
guides to the eye.

This means that the drive frequencies are slightly de-
tuned from the qubit frequencies such that the gate fideli-
ties are slightly better on average (compare [53] and Ta-
ble XI in Appendix C 2; note, however, that better fideli-
ties do not always imply better gates [5]). Unlike the first
gate set, the second gate set shows nearly perfect perfor-
mance for all the encoded circuits (see Fig. 4(b)), suggest-
ing that a fault-tolerant implementation can profit more
from reduced control errors than a bare implementation.
In particular, by examining the numerical results used
for Fig. 4(b), we find that the fault-tolerance criterion
is satisfied for all circuits but the one with ID 0 (corre-
sponding to |00〉; see Table I). This is the only circuit for
which the bare version does not require any pulses and,
obviously, applying no pulse is bound to perform bet-
ter than applying the preparation pulses to encode |00〉.
Therefore, in the absence of additional measurement er-
rors, this exception is reasonable.

To assess the effect expected due to measurement er-
rors, we model an additional error for each qubit such
that with probability p, a measured bit 0 is erroneously
counted as 1, and vice versa. As shown in Fig. 4(c) for
the case p = 0.08, the fault-tolerance test is passed for all
circuits. Thus, in addition to the natural unitary errors
inherently included in the real-time transmon simulation
(cf. [5]), the presence of measurement errors is essential
to fulfill the fault-tolerance criterion.
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FIG. 5. (Color online) Test of the fault-tolerance criterion in
system (3), i.e., the 16-qubit device ibmqx5 using the qubits
(Q4, Q3, Q2, Q15, Q14) on (a) April 3, 2018, (b) April 9, 2018,
and (c) April 19, 2018. Shown are the statistical distances to
the ideal result for the selected bare (dashed red line) and en-
coded (solid green line) circuits as defined in Eqs. (2) and (3),
and the postselection ratios (blue dots). All plotted quantities
are dimensionless. Only the circuits that could be mapped on
the topology were run on the real device. Lines connecting
the data points are guides to the eye.

V. PHYSICAL TRANSMON DEVICE

System (3) is used to test the fault-tolerance crite-
rion by utilizing the 16-qubit device ibmqx5 provided
by IBM [4]. Using the qubit mapping q0q1q2q3q4 7→
Q4Q3Q2Q15Q14, this device provides the correct connec-
tivity to run all circuits except for the encoded version of
the circuits with initial state |00〉 (a problem which was
solved in system (2) by including the additional resonator
r5, see Fig. 3).

The results for 15 out of the 465 tested circuits are
shown in Fig. 5 for three different calibrations. We ob-
serve that the performance of the device varies for differ-
ent calibrations. For instance, the experiment on April
9, 2018 shown in Fig. 5(b) failed the fault-tolerance test.
However, in general many runs passed the test for all cir-
cuits (see also Fig. 6 in Appendix B for the full set of
circuits).

As system (2), discussed in Sec. IV, was designed to
simulate a transmon processor such as ibmqx5, it is of
course tempting to set the results in relation to the ex-
perimental observations presented in Fig. 5. The first set
of gate pulses used for Fig. 4(a), where the drive frequen-
cies were not optimized but set to the qubit frequencies,
shows a circuit performance that differs from the results
shown in Fig. 5. In particular, the fault-tolerance test
fails. However, the second gate set used for Fig. 4(b)
yields a positive result for all circuits that often passed
the test on ibmqx5 (see Fig. 5(a) and (c)). This sug-
gests that the pulses used on IBM’s processor also utilize
slightly detuned drive frequencies.

Note that the individual circuit performance of system

(3) depends a lot on the pulse parameters found in the
calibration procedure. For instance, in Fig. 5(b) and (c),
the encoded circuits with initial state |Φ+〉 always per-
form slightly worse than the encoded circuits with initial
state |0+〉. We examined the gate errors reported by
IBM for the corresponding two-qubit gates, finding that
they reflect this observation on April 9 and April 19.
The reason that we cannot observe this feature in Fig. 4
for system (2) is that our pulse-optimization procedure
produces slightly more reliable pulse parameters whose
two-qubit error rates do not spread as much and also do
not differ between runs on separate days (cf. Table XI in
Appendix C 2).

The best agreement between simulation and experi-
ment is achieved when an additional measurement er-
ror is taken into account (see Fig. 4(c)). In particular,
the fault-tolerance criterion is then also satisfied for ev-
ery encoded circuit that could not be run on ibmqx5
(corresponding to the circuit IDs 0, 240, 216, 171, and
270). This suggests that the positive result for the fault-
tolerance test may also be observed if the device’s connec-
tivity is extended to support the complete set of circuits,
as was done in the simulation (see Fig. 3).

A direct comparison to system (1), i.e., the system
of spin qubits coupled to an environment discussed in
Sec. III, yields another interesting conclusion. Clearly,
the performance of the tested circuits shown in Fig. 2
differs largely from the results shown in Fig. 5 in that the
fault-tolerance criterion for system (1) was not satisfied
for any of the studied set of parameters. This led to the
conclusion that decoherence errors are difficult to miti-
gate with the fault-tolerant scheme. However, Fig. 5 and
Fig. 6 (see Appendix B) show that the fault-tolerance cri-
terion can indeed be achieved in the IBM Q Experience.
Thus we conclude that the errors in IBM’s quantum pro-
cessors are not dominated by decoherence from material
defects.

VI. DISCUSSION

We have tested a full fault-tolerant protocol encoding
two logical qubits on three complementary systems, each
dominated by a certain type of errors present in applica-
tions. Since these errors can be much more complicated
than those assumed in the design of fault-tolerant pro-
tocols, it is by no means guaranteed that using a fault-
tolerant protocol improves the computation.

System (1) is a set of five spin qubits coupled to an
environment with various coupling strengths, sizes, and
temperatures. This system suffers only from decoherence
errors that are controlled by the coupling strength. We
found that the fault-tolerance criterion is not satisfied for
any set of parameters, suggesting that dominating deco-
herence errors are hard to mitigate with a fault-tolerant
scheme.

System (2) is a model system of five transmon qubits
and six resonators, in which the quantum gates are im-
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plemented by the same Gaussian microwave pulses that
are also used in experiments [5, 47, 52, 54]. Lacking an
environment, this system’s performance is purely affected
by unitary control errors. We found that for the appro-
priate set of gate pulses with detuned drive frequencies,
a full fault-tolerant protocol can systematically improve
a quantum computer’s performance. In the presence of
an additional measurement error, we showed that the
fault-tolerance criterion is satisfied for all circuits under
investigation.

System (3) is a physical implementation of a quan-
tum computer based on transmon qubits, namely, the
device ibmqx5 of the IBM Q Experience [4]. While the
results varied with the day on which we carried out the
experiments, the general observation was that the fault-
tolerance criterion is satisfied for all circuits that could be
mapped on the device topology. Furthermore, by com-
paring the experimental results with the simulation re-
sults for system (2), we found that this observation still
holds if the device’s topology is extended to support the
complete set of circuits. A comparison with the results
for system (1) further suggests that the errors in IBM’s
quantum processor are largely control and measurement
errors, implying that the device is well isolated from de-

coherence due to material defects.

Based on these results, we conclude that the perfor-
mance of a quantum computer can be systematically im-
proved with a fault-tolerant protocol, as long as the er-
rors of the underlying processor are due to control and
measurement errors. However, the use of a fault-tolerant
scheme is not necessarily helpful when decoherence errors
are dominant.
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Appendix A: Specification of the fault-tolerant scheme

The error-detecting code used in the fault-tolerant scheme is the [[4, 2, 2]] code, where the logical two-qubit states
are defined as

|00〉 = (|0000〉+ |1111〉)/
√

2, (A1)

|01〉 = (|1100〉+ |0011〉)/
√

2, (A2)

|10〉 = (|1010〉+ |0101〉)/
√

2, (A3)

|11〉 = (|0110〉+ |1001〉)/
√

2. (A4)

By linear combination, one can derive the encoded versions of the other two initial states considered in this study,

|0+〉 = (|0000〉+ |1100〉+ |0011〉+ |1111〉)/2, (A5)

|Φ+〉 = (|0000〉+ |0110〉+ |1001〉+ |1111〉)/2. (A6)

The physical four-qubit states are enumerated in increasing order as q1q2q3q4 and an additional qubit q0 is used as
the ancilla qubit. Using this labeling, the logical gates used in the tested circuits map to the physical gates according
to

X1 = X1X3, (A7)

X2 = X1X2, (A8)

Z1 = Z1Z2, (A9)

Z2 = Z1Z3, (A10)

HHS = H1H2H3H4, (A11)

CZ = S1S2S3S4Z2Z3, (A12)

which can be easily verified by applying the logical gates to the definition of the logical states given in Eqs. (A1)–(A4).
In Table III and Table IV, we give a specification of all gate sequences used to assemble the bare and encoded versions
of the circuits to test the fault-tolerance criterion.
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TABLE III. Initial states and the bare and encoded versions of their preparation circuits.

State Bare version Encoded version

|00〉 q3 |0〉
q4 |0〉

q0 |0〉
q1 |0〉 •
q2 |0〉 •
q3 |0〉 H • •
q4 |0〉 •

|0+〉 q3 |0〉

q4 |0〉 H

q1 |0〉
q2 |0〉 H •
q3 |0〉 H •
q4 |0〉

|Φ+〉 q3 |0〉 H •

q4 |0〉

q1 |0〉 H •
q2 |0〉
q3 |0〉 H •
q4 |0〉
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TABLE IV. Bare and encoded gate elements.

Gate Bare version Encoded version

X1 q3 X

q4

q1 X

q2

q3 X

q4

X2 q3

q4 X

q1 X

q2 X

q3

q4

Z1 q3 Z

q4

q1 Z

q2 Z

q3

q4

Z2 q3

q4 Z

q1 Z

q2

q3 Z

q4

HHS q3 H • H • H •
q4 H H H

q1 H

q2 H

q3 H

q4 H

CZ q3 •
q4 H H

q1 S

q2 S Z

q3 S Z

q4 S
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Appendix B: Full set of tested circuits

In Table V, we give a list of all 465 circuits generated by the procedure suggested in [15] for the maximum circuit
length T = 10, the repetition parameter RP = 6, and the periodicity P = 3.

A representative result of the performance of all circuits on the IBM device is shown in Fig. 6 (note that the
interruptions in the solid green line are due to the fact that the encoded version of |00〉 cannot be prepared using
the topology of system (3)). This result undeniably demonstrates that encoding the circuits according to the fault-
tolerant scheme can improve the overall performance of the circuits that can be implemented on the device. However,
as already mentioned in Sec. V, the fault-tolerance criterion was not satisfied on all days that we ran the experiment.
One such result is shown in Fig. 7 where some of the encoded circuits with initial state |Φ+〉 have rather high statistical
distances and low PS ratios.

For completeness, we also present results for the full set of circuits tested in the decoherence model (system (1))
in Fig. 8. This figure does not have the above-mentioned interruptions since, in system (1), all 465 circuits can be
implemented and tested in both their bare and encoded version.

TABLE V. List of all 465 circuits used to test the fault-tolerance criterion. The elements consist of a range of three circuit IDs
labeling the subsequent circuits, which consist of a particular set of gates operating on three initial states |i〉 ∈

(
|00〉 , |0+〉 , |Φ+〉

)
,

enumerated in this order.

0-2 |i>
3-5 X1 |i>
6-8 X2 |i>
9-11 Z1 |i>
12-14 Z2 |i>
15-17 HHS |i>
18-20 CZ |i>
21-23 X2 Z1 |i>
24-26 HHS Z1 |i>
27-29 Z1 Z2 |i>
30-32 X1 HHS |i>
33-35 CZ Z2 |i>
36-38 Z2 Z1 CZ |i>
39-41 Z1 X2 X2 |i>
42-44 CZ CZ HHS |i>
45-47 X1 X1 X1 |i>
48-50 Z2 X2 Z1 |i>
51-53 X1 X2 X1 |i>
54-56 X2 X1 CZ X1 |i>
57-59 HHS Z2 CZ Z1 |i>
60-62 HHS X1 Z2 Z2 |i>
63-65 CZ Z2 Z1 Z2 |i>
66-68 HHS HHS HHS Z1 |i>
69-71 X2 Z2 HHS CZ |i>
72-74 Z1 HHS CZ X2 Z2 |i>
75-77 X2 Z2 Z1 HHS CZ |i>
78-80 HHS X2 Z2 CZ CZ |i>
81-83 X1 X2 X1 X2 X1 |i>
84-86 Z2 Z1 X1 Z2 CZ |i>
87-89 HHS CZ HHS X2 CZ |i>
90-92 Z2 CZ X2 X2 X1 Z1 |i>
93-95 Z1 X2 Z1 X2 X1 Z1 |i>
96-98 Z1 Z2 X1 Z1 HHS X2 |i>
99-101 Z2 CZ X1 HHS X1 CZ |i>
102-104 X2 CZ HHS X2 CZ Z2 |i>
105-107 X1 X1 X1 X2 X2 Z2 |i>
108-110 Z1 X2 Z2 CZ X2 X1 X1 |i>
111-113 HHS X2 X2 Z2 Z2 X1 X1 |i>
114-116 Z2 X1 Z2 X2 CZ HHS CZ |i>
117-119 X2 Z2 Z1 HHS Z1 HHS HHS |i>
120-122 CZ Z2 Z1 Z2 X1 CZ X2 |i>
123-125 X2 HHS Z1 X1 X2 CZ X2 |i>
126-128 Z2 Z1 HHS HHS X2 X1 Z2 CZ |i>
129-131 Z1 X2 Z1 HHS CZ Z2 Z2 X2 |i>
132-134 CZ Z2 HHS Z2 HHS CZ Z2 HHS |i>
135-137 CZ X2 CZ CZ X2 X2 Z2 Z2 |i>
138-140 Z1 Z2 CZ CZ X1 X1 X2 X2 |i>
141-143 HHS X1 X2 X1 X2 Z2 Z1 X1 |i>
144-146 HHS CZ X2 HHS X1 X1 Z1 X1 X2 |i>
147-149 X1 X1 HHS Z2 HHS HHS X2 Z2 CZ |i>
150-152 X1 CZ HHS CZ HHS Z1 CZ CZ X2 |i>
153-155 CZ X1 Z2 HHS X2 X1 Z1 Z1 HHS |i>

156-158 X2 CZ HHS HHS HHS Z2 CZ CZ Z1 |i>
159-161 Z2 HHS CZ X2 X2 Z1 Z2 X1 X1 |i>
162-164 X2 X1 CZ HHS CZ Z1 Z1 X1 X2 Z2 |i>
165-167 Z2 X1 Z1 Z1 CZ Z1 X2 Z1 HHS CZ |i>
168-170 CZ HHS X1 Z2 X2 X2 X2 Z2 HHS CZ |i>
171-173 CZ X1 X2 Z1 Z1 X1 X1 Z1 Z1 Z2 |i>
174-176 Z2 Z2 Z2 X2 Z1 CZ CZ Z2 X2 X2 |i>
177-179 Z1 X2 HHS CZ X1 HHS CZ CZ X1 X1 |i>
180-182 Z2 Z2 |i>
183-185 Z2 Z2 Z2 |i>
186-188 Z2 Z2 Z2 Z2 |i>
189-191 Z2 Z2 Z2 Z2 Z2 |i>
192-194 Z2 Z2 Z2 Z2 Z2 Z2 |i>
195-197 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i>
198-200 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i>
201-203 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i>
204-206 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i>
207-209 CZ CZ |i>
210-212 CZ CZ CZ |i>
213-215 CZ CZ CZ CZ |i>
216-218 CZ CZ CZ CZ CZ |i>
219-221 CZ CZ CZ CZ CZ CZ |i>
222-224 CZ CZ CZ CZ CZ CZ CZ |i>
225-227 CZ CZ CZ CZ CZ CZ CZ CZ |i>
228-230 CZ CZ CZ CZ CZ CZ CZ CZ CZ |i>
231-233 CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ |i>
234-236 X1 X1 |i>
237-239 X1 X1 X1 X1 |i>
240-242 X1 X1 X1 X1 X1 |i>
243-245 X1 X1 X1 X1 X1 X1 |i>
246-248 X1 X1 X1 X1 X1 X1 X1 |i>
249-251 X1 X1 X1 X1 X1 X1 X1 X1 |i>
252-254 X1 X1 X1 X1 X1 X1 X1 X1 X1 |i>
255-257 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 |i>
258-260 HHS CZ |i>
261-263 HHS CZ HHS CZ |i>
264-266 HHS CZ HHS CZ HHS CZ |i>
267-269 HHS CZ HHS CZ HHS CZ HHS CZ |i>
270-272 HHS CZ HHS CZ HHS CZ HHS CZ HHS CZ |i>
273-275 Z1 Z2 Z1 Z2 |i>
276-278 Z1 Z2 Z1 Z2 Z1 Z2 |i>
279-281 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 |i>
282-284 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 |i>
285-287 X2 X2 |i>
288-290 X2 X2 X2 X2 |i>
291-293 X2 X2 X2 X2 X2 X2 |i>
294-296 X2 X2 X2 X2 X2 X2 X2 X2 |i>
297-299 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 |i>
300-302 X2 Z1 X2 Z1 |i>
303-305 X2 Z1 X2 Z1 X2 Z1 |i>
306-308 X2 Z1 X2 Z1 X2 Z1 X2 Z1 |i>
309-311 X2 Z1 X2 Z1 X2 Z1 X2 Z1 X2 Z1 |i>

312-314 X1 HHS X1 HHS |i>
315-317 X1 HHS X1 HHS X1 HHS |i>
318-320 X1 HHS X1 HHS X1 HHS X1 HHS |i>
321-323 X1 HHS X1 HHS X1 HHS X1 HHS X1 HHS |i>
324-326 Z2 Z1 |i>
327-329 Z2 Z1 Z2 Z1 |i>
330-332 Z2 Z1 Z2 Z1 Z2 Z1 |i>
333-335 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 |i>
336-338 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 |i>
339-341 CZ CZ X1 |i>
342-344 CZ CZ X1 CZ CZ X1 |i>
345-347 CZ CZ X1 CZ CZ X1 CZ CZ X1 |i>
348-350 X1 CZ Z2 |i>
351-353 X1 CZ Z2 X1 CZ Z2 |i>
354-356 X1 CZ Z2 X1 CZ Z2 X1 CZ Z2 |i>
357-359 CZ CZ X2 |i>
360-362 CZ CZ X2 CZ CZ X2 |i>
363-365 CZ CZ X2 CZ CZ X2 CZ CZ X2 |i>
366-368 Z1 Z1 X1 |i>
369-371 Z1 Z1 X1 Z1 Z1 X1 |i>
372-374 Z1 Z1 X1 Z1 Z1 X1 Z1 Z1 X1 |i>
375-377 X2 Z2 HHS |i>
378-380 X2 Z2 HHS X2 Z2 HHS |i>
381-383 X2 Z2 HHS X2 Z2 HHS X2 Z2 HHS |i>
384-386 HHS HHS X2 |i>
387-389 HHS HHS X2 HHS HHS X2 |i>
390-392 HHS HHS X2 HHS HHS X2 HHS HHS X2 |i>
393-395 HHS CZ X2 CZ |i>
396-398 HHS CZ X2 CZ HHS CZ X2 CZ |i>
399-401 Z1 HHS HHS X2 |i>
402-404 Z1 HHS HHS X2 Z1 HHS HHS X2 |i>
405-407 Z2 Z1 X2 Z2 |i>
408-410 Z2 Z1 X2 Z2 Z2 Z1 X2 Z2 |i>
411-413 Z2 X1 Z2 X2 |i>
414-416 Z2 X1 Z2 X2 Z2 X1 Z2 X2 |i>
417-419 Z1 Z1 X2 X2 |i>
420-422 Z1 Z1 X2 X2 Z1 Z1 X2 X2 |i>
423-425 X2 HHS Z2 Z2 |i>
426-428 X2 HHS Z2 Z2 X2 HHS Z2 Z2 |i>
429-431 Z1 Z2 Z1 HHS X1 |i>
432-434 Z1 Z2 Z1 HHS X1 Z1 Z2 Z1 HHS X1 |i>
435-437 Z1 CZ Z1 Z2 HHS |i>
438-440 Z1 CZ Z1 Z2 HHS Z1 CZ Z1 Z2 HHS |i>
441-443 Z1 Z2 X2 Z1 HHS |i>
444-446 Z1 Z2 X2 Z1 HHS Z1 Z2 X2 Z1 HHS |i>
447-449 X1 Z2 HHS CZ CZ |i>
450-452 X1 Z2 HHS CZ CZ X1 Z2 HHS CZ CZ |i>
453-455 X1 X1 X1 HHS Z2 |i>
456-458 X1 X1 X1 HHS Z2 X1 X1 X1 HHS Z2 |i>
459-461 HHS X1 Z2 X1 Z2 |i>
462-464 HHS X1 Z2 X1 Z2 HHS X1 Z2 X1 Z2 |i>
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FIG. 6. Test of the fault-tolerance criterion in system (3) (see Sec. V) for all 465 circuits using the qubits (Q4, Q3, Q2, Q15, Q14)
of the IBM 16-qubit device ibmqx5 on April 19, 2018. Shown are the statistical distances to the ideal result for the selected
bare (red plusses) and encoded (green crosses) circuits, and the postselection ratios (blue dots). All plotted quantities are
dimensionless. Only the circuits that could be mapped on the topology were run on the real device. Lines connecting the data
points are guides to the eye.
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FIG. 7. Test of the fault-tolerance criterion in system (3) (see Sec. V) for all 465 circuits using the qubits (Q4, Q3, Q2, Q15, Q14)
of the IBM 16-qubit device ibmqx5 on April 20, 2018. Shown are the statistical distances to the ideal result for the selected
bare (red plusses) and encoded (green crosses) circuits, and the postselection ratios (blue dots). All plotted quantities are
dimensionless. Only the circuits that could be mapped on the topology were run on the real device. Lines connecting the data
points are guides to the eye.

Appendix C: Specification of the simulation models

1. Spin qubits coupled to an environment

The model of five spin qubits coupled to an environment with NE two-level defects is defined by the Hamiltonian
given in Eqs. (4)–(7). For this Hamiltonian, we numerically solve the TDSE given in Eq. (1) by means of the Chebyshev
polynomial algorithm to machine precision [42, 43, 51], which yields the state |Ψ(t)〉 of the system after execution of
a particular circuit.

By construction, the only source of errors in this model is the interaction of the qubits with the environment
controlled by the coupling strength λ. For λ = 0, the quantum computer model is designed to work perfectly.
Therefore, the quantum gates in this model are not implemented by pulses but by choosing suitable parameters hαn
and Gαnm for HQ given by Eq. (5) [51], and having the system evolve through the TDSE given in Eq. (1) for a certain
time t. The specific set of parameters for the gates used in the tested circuits is given in Table VI. The two-qubit gate
CNOTnm between qubits n and m is implemented through the gate sequence HnInmHn, where Hn is the Hadamard
gate on qubit n and Inm implements a two-qubit evolution of the form σxn+σxm−σxnσxm through Eq. (5) (see Table VI).

In addition to the results for λ ∈ [0.01, 0.2] presented in Sec. III, we have studied the performance of the circuits
for various numbers NE of two-level systems in the environment (see Fig. 9) and various inverse temperatures β (see
Fig. 10).

The number NE of two-level systems in the environment is limited by two factors. On the one hand, it should not
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FIG. 8. Test of the fault-tolerance criterion in the decoherence model (system (1), see Sec. III) using NE = 5, β = 1, and
λ = 0.1 for the full set of circuits. Shown are the statistical distances to the ideal result for the selected bare (red plusses)
and encoded (green crosses) circuits, and the postselection ratios (blue dots). All plotted quantities are dimensionless. Lines
connecting the data points are guides to the eye.
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TABLE VI. Summary of the parameters for the required set of quantum gates (see Eqs. (A7)–(A12)), implemented through the
time evolution of HQ given in Eq. (5). Each parameter hαn and Gαnm is given in GHz, and the duration t of the corresponding
gate is given in ns.

Gate hxn hxm hzn Gxnm t

Xn 1 - 0 0 π/2

Zn 0 - 15 + n/2 0 π/(30 + n)

Sn 0 - 15 + n/2 0 π/(60 + 2n)

Hn 15 + n/2 - 15 + n/2 0 π/
√

2/(30 + n)

Inm −0.025 −0.025 0 0.025 10π
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FIG. 9. (Color online) Test of the fault-tolerance criterion for different environment sizes (a) NE = 5, (b) NE = 20, and (c)
NE = 27. Shown are the statistical distances to the ideal result for the selected bare (dashed red line) and encoded (solid green
line) circuits, and the postselection ratios (blue dots). All plotted quantities are dimensionless. The simulations were done for
inverse temperature β = 1 and coupling strength λ = 0.1. Lines connecting the data points are guides to the eye.

be too small for decoherence effects to be observable, so NE = 5 is the smallest case that we consider. In this case,
the virtual interaction between two spin qubits mediated by the environment has a significantly smaller path than for
larger NE , so the influence of the environment on the performance is rather strong (see Fig. 9(a)). On the other hand,
there is a practical limitation given by the available computational resources on the supercomputer. For NE = 27,
the dimension of the total Hilbert space is 232, so the simulation of the full time evolution is rather expensive. Hence
this is the bound we set for what can be simulated with a reasonable amount of computer resources (CPU time and
memory). By comparing the results for NE = 20 to those for NE = 27, shown in Fig. 9(b) and (c) respectively, we
find that there is no significant qualitative change. In particular, the statistical distances Denc for the encoded circuits
all lie between 0 and 0.15, with only small fluctuations between the results for NE = 20 and NE = 27. But the main
observation is that in all cases, some circuits perform better when they are encoded while others are better without
encoding.

The dependence of the fault-tolerance test on the inverse temperature β is shown in Fig. 10. We find no significant
difference between the results for β = 0 and β = 1 shown in Fig. 10(a) and (b), respectively. These cases represent
the high temperature regime. In contrast, the results for β = 5, shown in Fig. 10(c), resemble the results from the
smallest environment NE = 5, shown in Fig. 9(a). Hence, this low-temperature regime indicates that the system is
no longer affected by pure decoherence, but that other effects also come into play. However, although some influence
of the temperature on the performance of the circuits can be observed, the qualitative results do not change. This
means that the bare circuits that outperform their encoded equivalents are the same in each case. Hence, in this
system, the criterion for fault tolerance is not satisfied in any of the regimes under investigation.
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FIG. 10. (Color online) Test of the fault-tolerance criterion for different inverse temperatures (a) β = 0, (b) β = 1, and (c)
β = 5. Shown are the statistical distances to the ideal result for the selected bare (dashed red line) and encoded (solid green
line) circuits, and the postselection ratios (blue dots). All plotted quantities are dimensionless. All simulations were done for
environment size NE = 20 and coupling strength λ = 0.1. Lines connecting the data points are guides to the eye.

2. Transmon simulation

The Hamiltonian given in Eqs. (8)–(10) models five transmon qubits coupled by six resonators, as schematically
shown in Fig. 3. The full set of relevant device parameters is summarized in Table VII and Table VIII. We numerically
solve the TDSE in Eq. (1) for the time-dependent Hamiltonian given in Eq. (8), using the unconditionally stable
Suzuki-Trotter product-formula algorithm [50, 51] to second order, to obtain |Ψ(t)〉 at any time t. In this work, we
express the full state |Ψ(t)〉 in the joint eigenbasis of the five transmons and the six resonators |m0 · · ·m4; k0 · · · k5〉,
where each transmon index mi enumerates the first four eigenstates of 4ECin̂

2
i −EJi cos ϕ̂i, and the resonator indices

kr enumerate the first four Fock states. The algorithm results in four-component updates of the full state |Ψ(t)〉 at
each time step τ = 0.001 ns. We have verified that this basis accurately covers the system dynamics by comparison
with exact diagonalization and with the simulation in the charge basis (see [5] where 17 levels were included for each
transmon).

Quantum gates are implemented by choosing a particular pulse for ngi(t) in the time-dependent Hamiltonian given
in Eq. (9). As in the corresponding experiments [52, 56], a single-qubit pulse on qubit i is defined by

ngi(t) = ΩG(t) cos(2πft− γ) + βXΩ̇G(t) cos(2πft− γ − π

2
), (C1)

where ΩG(t) is a Gaussian with amplitude ΩX , duration TX = 80 ns, and width σ = TX/4 (see [5]), βX is the DRAG
coefficient [53, 57], f is the drive frequency, and γ is a phase parameter used to implement VZ gates [52]. The two-
qubit CNOT gate is implemented using an echoed cross-resonance scheme [5, 47, 56], in which the single-qubit pulses
implementing the echo are realized by Eq. (C1), and the flat-top Gaussians are obtained from the same equation by
choosing βX = 0 and ΩG(t) to rise for 0 ≤ t ≤ 15 ns with σ = 5 ns, stay constant at ΩCR for 15 ns < t < 15 ns + TCR,
and fall again for 15 ns + TCR ≤ t ≤ 30 ns + TCR (see [5] for more information).

We optimize two sets of gate pulses for the experiments, namely one without frequency tuning and one with
frequency tuning. The pulses without frequency tuning use the qubit frequencies as drive frequencies, i.e., f = ω/2π,
where the qubit frequencies ω are taken from Table VII. In contrast, with frequency tuning, the pulse-optimization
procedure also fits the drive frequencies, such that the resulting pulses have the drive frequencies f = ωdr/2π (the
corresponding values are also listed in Table VII). To distinguish between both gate sets, we attach the suffix -withf
to the pulses with frequency tuning. The relevant parameters resulting from a Nelder-Mead optimization [58] are
summarized in Table IX and Table X.

For each pulse, we evaluate various gate metrics such as the matrix distance ∆ used as the objective function in
the optimization [5], the diamond distance η♦ [35], the average gate fidelity Favg [59], and the unitarity u [60]. These
metrics are reported in Table XI.
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TABLE VII. Device parameters of the transmon Hamiltonian defined in Eq. (9). All values are given in GHz. The charging
energies EC and the Josephson energies EJ define the transmon qubits. The qubit frequencies ω have been obtained by
preparing the respective qubit in the state |+〉 and all other qubits in the state |0〉, having the entire system evolve for 1000 ns,
and measuring the frequency of 〈σx(t)〉. The drive frequencies ωdr result from additionally tuning this ω in the single-qubit
pulse-optimization procedure. These frequencies are only used by the gate set labeled *-withf.

q0 q1 q2 q3 q4

EC/2π 0.301 0.301 0.301 0.301 0.301

EJ/2π 11.6671 12.1273 13.003 12.2456 11.1943

ω/2π 4.97154 5.07063 5.26657 5.10145 4.86036

ωdr/2π 4.97164 5.07043 5.26634 5.10147 4.86055

TABLE VIII. Device parameters of the resonator Hamiltonian defined in Eq. (10). All values are given in GHz.

r0 r1 r2 r3 r4 r5

Ω/2π 6.45 6.25 6.65 6.65 6.45 6.85

G/2π 0.07 0.07 0.07 0.07 0.07 0.07

Coupled to q1, q2 q0, q1 q2, q3 q1, q4 q3, q4 q0, q4

TABLE IX. Parameters of the Gaussian xpih-* pulses defined by Eq. (C1). The drive frequencies f are given in GHz and
the pulse time TX and the DRAG coefficient βX are given in ns. The Gaussian drive amplitudes ΩX are unitless. All pulses
labeled *-withf represent pulses with frequency tuning, meaning that the drive frequency has additionally been optimized in
the pulse-optimization procedure.

Pulse name f TX ΩX βX

xpih-0 4.97154 80 0.00238 1.335

xpih-1 5.07063 80 0.00236 -1.904

xpih-2 5.26657 80 0.00233 -2.165

xpih-3 5.10145 80 0.00236 0.498

xpih-4 4.86036 80 0.00241 2.276

xpih-0-withf 4.97164 80 0.00239 0.239

xpih-1-withf 5.07043 80 0.00236 0.238

xpih-2-withf 5.26634 80 0.00233 0.229

xpih-3-withf 5.10147 80 0.00236 0.232

xpih-4-withf 4.86055 80 0.00241 0.236
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TABLE X. Parameters defining the echoed cross-resonance pulses (CR2 in [5]) to implement the CNOT gate. The drive
frequencies fC and fT are given in GHz. The times TCR of the flat top in a cross-resonance pulse, the Gaussian pulse times
TX , and the DRAG coefficients βC and βT are given in ns. The Gaussian drive amplitudes ΩCR and ΩC on the control qubit
and ΩT on the target qubit are unitless. All pulses labeled *-withf represent pulses with frequency tuning, meaning that the
drive frequency has also been optimized in the pulse-optimization procedure.

Pulse name fC fT TCR TX ΩCR ΩC βC ΩT βT

cnot-1-0 5.07063 4.97154 76.955 80 0.0097 0.00461 0.640 0.00238 1.335

cnot-1-4 5.07063 4.86036 64.161 80 0.0183 0.00476 -0.148 0.00241 2.276

cnot-2-1 5.26657 5.07063 33.398 80 0.0235 0.00465 -0.036 0.00236 -1.904

cnot-3-2 5.10145 5.26657 242.064 80 0.0111 0.00471 0.508 0.00233 -2.165

cnot-3-4 5.10145 4.86036 33.247 80 0.0290 0.00465 0.640 0.00241 2.276

cnot-4-0 4.86036 4.97154 105.151 80 0.0210 0.00449 -1.511 0.00238 1.335

cnot-1-0-withf 5.07043 4.97164 73.538 80 0.0101 0.00477 0.798 0.00239 0.239

cnot-1-4-withf 5.07043 4.86055 109.439 80 0.0114 0.00472 0.502 0.00241 0.236

cnot-2-1-withf 5.26634 5.07043 82.077 80 0.0111 0.00463 0.661 0.00236 0.238

cnot-3-2-withf 5.10147 5.26634 58.763 80 0.0429 0.00480 -0.198 0.00233 0.229

cnot-3-4-withf 5.10147 4.86055 85.294 80 0.0118 0.00474 0.247 0.00241 0.236

cnot-4-0-withf 4.86055 4.97164 98.599 80 0.0239 0.00483 0.115 0.00239 0.239

TABLE XI. Gate metrics resulting from the pulse-optimization procedure. ∆ is the distance objective (loss function), η♦ is
the diamond distance, Favg is the average gate fidelity, and u is the unitarity (see [5] for more information about these metrics).

Pulse name ∆ η♦ Favg u

xpih-0 4.60× 10−5 0.007 0.9930 0.9860

xpih-1 1.19× 10−4 0.011 0.9884 0.9770

xpih-2 7.52× 10−6 0.002 0.9962 0.9925

xpih-3 8.99× 10−6 0.003 0.9965 0.9930

xpih-4 4.17× 10−5 0.006 0.9934 0.9868

xpih-0-withf 4.59× 10−5 0.007 0.9930 0.9860

xpih-1-withf 1.14× 10−4 0.011 0.9887 0.9774

xpih-2-withf 7.20× 10−6 0.002 0.9963 0.9927

xpih-3-withf 8.85× 10−6 0.003 0.9965 0.9930

xpih-4-withf 3.87× 10−5 0.006 0.9936 0.9873

cnot-1-0 1.34× 10−2 0.071 0.9852 0.9758

cnot-1-4 1.08× 10−1 0.177 0.9621 0.9668

cnot-2-1 4.68× 10−2 0.119 0.9714 0.9615

cnot-3-2 1.83× 10−2 0.088 0.9852 0.9777

cnot-3-4 9.54× 10−2 0.179 0.9671 0.9720

cnot-4-0 2.78× 10−1 0.284 0.9347 0.9783

cnot-1-0-withf 5.70× 10−2 0.149 0.9751 0.9728

cnot-1-4-withf 7.13× 10−3 0.056 0.9841 0.9712

cnot-2-1-withf 1.38× 10−2 0.081 0.9806 0.9668

cnot-3-2-withf 1.21× 10−1 0.207 0.9644 0.9764

cnot-3-4-withf 1.88× 10−2 0.090 0.9832 0.9740

cnot-4-0-withf 8.27× 10−2 0.168 0.9739 0.9806
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[13] A. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross,
M. Steffen, J. M. Gambetta, and J. M. Chow, “Demon-
stration of a quantum error detection code using a square
lattice of four superconducting qubits,” Nat. Commun. 6,
6979 (2015).
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