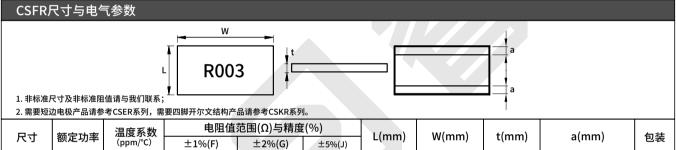
长边电极低阳采样电阳

独特的长边电极以及倒装结构,最大功率10W,最低温度系数±50ppm/°C最高工作温度+175°C,优异的散热表现,良好的功率系数,极低的电感极小的热电势(EMF),电极使用一流焊锡,机械性能优异

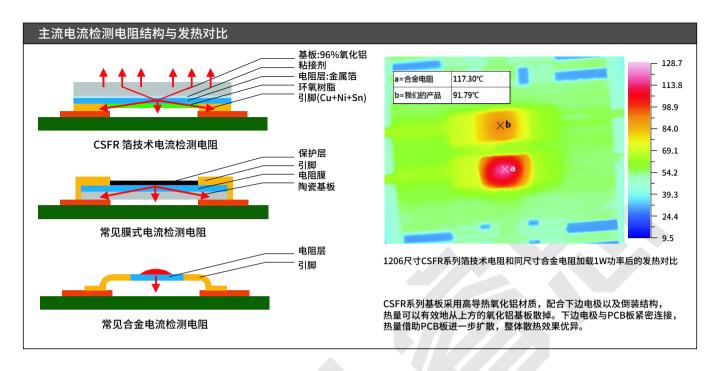
■ 散热性能很重要

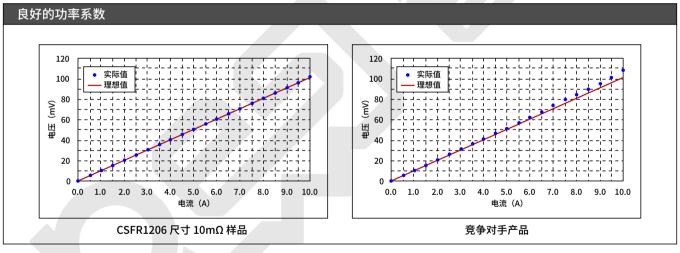
电阻的阻值漂移以及失效主要原因是受到热应力的影响。电阻严重的发热会导致长期稳定性变差,阻值漂移增大,寿命缩短,容易产生安全隐患。 发热也会影响电路中其他元器件的性能。CSFR系列基板采用高导热氧化铝 材质,配合下边电极以及倒装结构,热量可以有效地从上方的氧化铝基板 散掉。下边电极与PCB板紧密连接,热量借助PCB板进一步扩散。

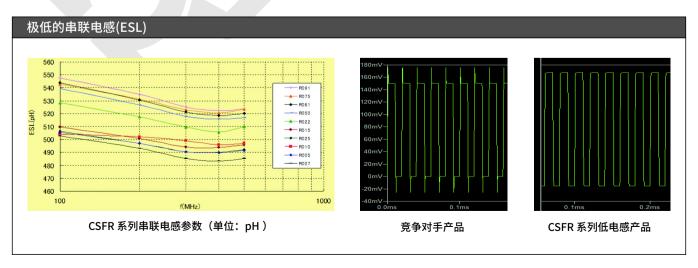

■ 低热电势对于直流的应用非常重要

在直流下,电流从电阻的一端流入另一端流出,电极与电阻层之间会形成一个温度差,根据塞贝克效应,这个温度差将使电阻产生一个寄生的电势差。对于阻值通常低至几个毫欧的电流检测电阻来说,这个电势差将会显著影响最终的输出电压,是不可忽略的。 CSFR系列电极与电阻层采用导热系数非常接近的材料,利用长边电极的特点增大接触面积,电极与电阻层导热良好,可以最大程度降低热电势的影响。

■ 为什么要选择功率系数小的电阻?

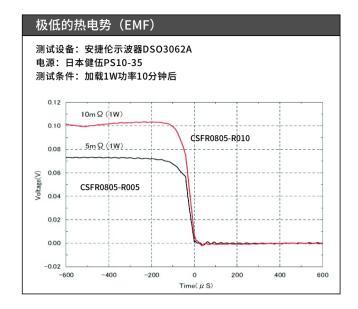

功率系数表达的是电阻通电之后自热对电阻产生的影响。在大电流的场合,电阻功率很高,很多时候自热产生的阻值漂移会严重影响电压信号输出,甚至超过温度系数所造成的影响。CSFR系列良好的散热性能可以降低功率自热产生的影响,使电阻具有良好的功率系数。

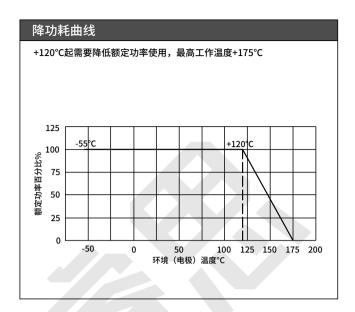


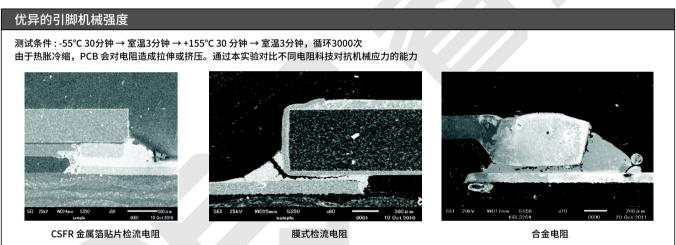

尺寸	额定功率	温度系数 (ppm/°C)	电阻值范围(Ω)与精度(%)			L(mm)	\//mm)	t(mm)	2/mm)	与壮
			±1%(F)	±2%(G)	±5%(J)	L(MM)	W(mm)	t(mm)	a(mm)	包装
0603	0.5W	±50(Q)	10m≤R≤100m	-	-	0.80±0.20	1.60±0.20	0.50±0.20	0.20±0.20(5mΩ~)	5Kpcs
		±100(K)	-	5m≤R≤9m	-					
0805	1W	±50(Q)	3m≤R≤500m	-	-	1.25±0.20	2.00±0.20	0.50±0.20	$0.30\pm0.20(2m\Omega^{\sim})/\ 0.55\pm0.20(1m\Omega)$	1Kpcs 5Kpcs
		±100(K)	-	R=2m	-					
		±150(R)	-	-	R=1m					
1206	1.5W	±50(Q)	3m≤R≤500m	1	-	1.60±0.20	3.20±0.20	0.50±0.20	0.30 \pm 0.20(2m Ω ~)/ 0.55 \pm 0.20(1m Ω)	
		±100(K)	-	R=2m	-					
		±150(R)	-	-	R=1m					
2010	2W	±50(Q)	3m≤R≤500m	-	-	2.50±0.20	5.00±0.20	0.50±0.20	$0.40\pm0.20(2m\Omega^{\sim})/\ 0.55\pm0.20(1m\Omega)$	
		±100(K)		R=2m	-					
		±150(R)	·	-	R=1m					
2512	3W	±50(Q)	3m≤R≤500m	-	-	3.10±0.20	6.30±0.20	0.50±0.20	$0.50\pm0.20(2m\Omega^{\sim})/\ 1.20\pm0.20(1m\Omega)$	
		±100(K)	-	R=2m	-					
		±150(R)	-	-	R=1m					
3015	4W	±50(Q)	3m≤R≤500m	-	-	3.80±0.20	7.60±0.20	0.50±0.20	$0.60\pm0.20(2m\Omega^{-})/\ 1.35\pm0.20(1m\Omega)$	
		±100(K)	-	R=2m	-					
		±150(R)	-	-	R=1m					
3518	5W	±50(Q)	3m≤R≤500m	-	-	4.50±0.20	9.00±0.20	0.50±0.20	$0.70\pm0.20(2m\Omega^{-})/\ 1.60\pm0.20(1m\Omega)$	
		±100(K)	-	R=2m	-					
		±150(R)			R=1m					
4320	6W	±50(Q)	3m≤R≤500m	-	-	5.00±0.20	11.00±0.20	0.50±0.20	$0.80\pm0.20(2m\Omega^{-})/\ 1.60\pm0.20(1m\Omega)$	1Kpcs
		±100(K)	-	R=2m	-					
		±150(R)	-	-	R=1m					
5930	10W	±50(Q)	10m≤R≤500m	-	-	7.50±0.20	15.00±0.20	0.65±0.20	1.10±0.20(1m Ω ~)/ 2.75±0.20(0.5m Ω)	
		±100(K)	3m≤R≤9m	R=2m	R=1m					
		±150(R)	-	-	-					

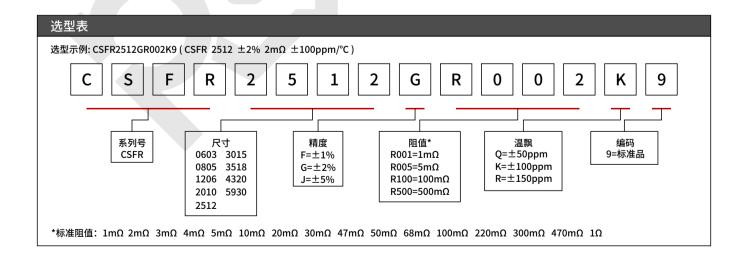
深圳市开步电子有限公司 | 长沙睿思电子科技有限公司 | www.resistor.today | sales@cbeureka.com | Tel:0755-83981080/83981010

长边电极低阻采样电阻








长边电极低阻采样电阻

