SIEMENS

手册

SIMATIC

ET 200SP

模拟量输入模块 AI 4xU/I 2-wire ST (6ES7134-6HD01-0BA1)

版本

06/2020

support.industry.siemens.com

SIEMENS

SIMATIC

ET 200SP 模拟量输入模块 AI 4xU/I 2 线制 ST (6ES7134-6HD01-0BA1)

设备手册

前言	
文档指南	1
产品总览	2
接线	3
参数/地址空间	4
中断/诊断报警	5
技术数据	6
参数数据记录	Α
模拟值表示	В

法律资讯

警告提示系统

为了您的人身安全以及避免财产损失,必须注意本手册中的提示。人身安全的提示用一个警告三角表示,仅与财产损失有关的提示不带警告三角。警告提示根据危险等级由高到低如下表示。

⚠危险

表示如果不采取相应的小心措施,将会导致死亡或者严重的人身伤害。

҈Λ警告

表示如果不采取相应的小心措施,可能导致死亡或者严重的人身伤害。

▲小心

表示如果不采取相应的小心措施,可能导致轻微的人身伤害。

注意

表示如果不采取相应的小心措施,可能导致财产损失。

当出现多个危险等级的情况下,每次总是使用最高等级的警告提示。如果在某个警告提示中带有警告可能导致人身伤害的警告三角,则可能在该警告提示中另外还附带有可能导致财产损失的警告。

合格的专业人员

本文件所属的产品/系统只允许由符合各项工作要求的**合格人员**进行操作。其操作必须遵照各自附带的文件说明,特别是其中的安全及警告提示。

由于具备相关培训及经验,合格人员可以察觉本产品/系统的风险,并避免可能的危险。

按规定使用 Siemens 产品

请注意下列说明:

҈Λ警告

Siemens

产品只允许用于目录和相关技术文件中规定的使用情况。如果要使用其他公司的产品和组件,必须得到 Siemens

推荐和允许。正确的运输、储存、组装、装配、安装、调试、操作和维护是产品安全、正常运行的前提。必须保证允许的环境条件。必须注意相关文件中的提示。

商标

所有带有标记符号 ® 的都是 Siemens AG

的注册商标。本印刷品中的其他符号可能是一些其他商标。若第三方出于自身目的使用这些商标,将侵害其 所有者的权利。

责任免除

我们已对印刷品中所述内容与硬件和软件的一致性作过检查。然而不排除存在偏差的可能性,因此我们不保证印刷品中所述内容与硬件和软件完全一致。印刷品中的数据都按规定经过检测,必要的修正值包含在下一版本中。

前言

本文档用途

本手册是对系统手册《ET 200SP 分布式 I/O 系统 (http://support.automation.siemens.com/WW/view/zh/58649293)》的补充。

本手册中介绍了与系统相关的各种功能。

本手册和系统/功能手册中介绍的信息将为您进行系统调试提供技术支持。

较先前版本相比的更改

与前一版本相比,本手册包含以下更改内容:

接线图与方框图已修改。

约定

CPU: 以下使用的术语"CPU"既可指代 S7-1500 自动化系统的 CPU, 也可指代 ET 200SP 分布式 I/O 系统的 CPU/接口模块。

STEP 7: 在本文档中,将使用"STEP 7"指代组态与编程软件"STEP 7 (TIA Portal)"的所有版本。

请注意下列注意事项:

说明

这些注意事项包含有关本文档中所述产品、产品操作或文档中应特别关注部分的重要信息。

Siemens

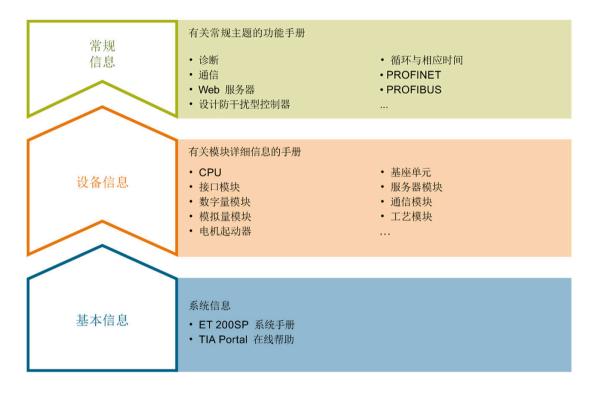
为其产品及解决方案提供了工业信息安全功能,以支持工厂、系统、机器和网络的安全运行。

为了防止工厂、系统、机器和网络受到网络攻击,需要实施并持续维护先进且全面的工业信息安全保护机制。Siemens 的产品和解决方案构成此类概念的其中一个要素。

客户负责防止其工厂、系统、机器和网络受到未经授权的访问。只有在有必要连接时并仅在采取适当安全措施(例如,防火墙和/或网络分段)的情况下,才能将该等系统、机器和组件连接到企业网络或 Internet。

关于可采取的工业信息安全措施的更多信息,请访问(https://www.siemens.com/industrialsecurity)。

Siemens 不断对产品和解决方案进行开发和完善以提高安全性。Siemens 强烈建议您及时更新产品并始终使用最新产品版本。如果使用的产品版本不再受支持,或 者未能应用最新的更新程序,客户遭受网络攻击的风险会增加。


要及时了解有关产品更新的信息,请订阅 Siemens 工业信息安全 RSS 源,网址为 (https://www.siemens.com/industrialsecurity)。

目录

	前言		3
1	文档指南		6
2	产品总览		11
	2.1	特性	11
3	接线		14
	3.1	接线图和方框图	14
4	参数/地址3	空间	16
	4.1	测量类型和范围	16
	4.2	参数	17
	4.3	参数说明	20
	4.4	地址空间	23
5	中断/诊断	报警	24
	5.1	状态和错误指示灯	24
	5.2	中断	26
	5.3	诊断报警	26
6	技术数据		28
	6.1	技术数据	28
Α	参数数据证	己录	34
	A.1	使用 GSD 文件进行组态时的相关性	34
	A.2	参数分配和参数数据记录的结构	36
	A.3	传送数据记录模拟量输入时出错	40
В	模拟值表示	Ť	41
	B.1	输入范围表示	42
	B.2	电压测量范围内模拟值的表示	44
	B.3	电流测量范围内模拟值的表示	46

文档指南

SIMATIC SIMATIC ET 200SP 分布式 I/O 系统的文档分为 3 个部分。这样用户可方便访问自己所需的特定内容。

基本信息

系统手册和入门指南中详细描述了 SIMATIC ET 200SP 分布式 I/O 系统的组态、安装、接线和调试。STEP 7 在线帮助为用户提供了组态和编程方面的支持。

设备信息

产品手册中包含模块特定信息的简要介绍,如特性、接线图、功能特性和技术规范。

常规信息

功能手册中包含有关 SIMATIC ET 200SP 分布式 I/O

系统的常规主题的详细描述,如诊断、通信、Web 服务器、运动控制和 OPC UA。

相关文档,可从 Internet

(https://support.industry.siemens.com/cs/cn/zh/view/109742709) 免费下载。

产品信息中记录了对这些手册的更改和补充信息。

相关产品信息,可从 Internet

(https://support.industry.siemens.com/cs/cn/zh/view/73021864) 免费下载。

手册集 ET 200SP

手册集中包含 SIMATIC ET 200SP 分布式 I/O

系统的完整文档,这些文档收集在一个文件中。

该手册集可从 Internet (https://support.automation.siemens.com/WW/view/zh/84133942) 下载。

"我的技术支持"

通过"我的技术支持"(我的个人工作区),"工业在线技术支持"的应用将更为方便快捷。

在"我的技术支持"中,用户可以保存过滤器、收藏夹和标签,请求 CAx 数据以及编译"文档"区内的个人数据库。此外,支持申请页面还支持用户资料自动填写。用户可随时查看当前的所申请的支持请求。

要使用"我的技术支持"中的所有功能,必须先进行注册。

有关"我的技术支持", 敬请访问 Internet

(https://support.industry.siemens.com/My/ww/zh).

"我的技术支持"- 文档

通过"我的技术支持"(我的个人工作区),"工业在线技术支持"的应用将更为方便快捷。

在"我的技术支持"中,用户可以保存过滤器、收藏夹和标签,请求 CAx 数据以及编译"文档"区内的个人数据库。此外,支持申请页面还支持用户资料自动填写。用户可随时查看当前的所申请的支持请求。

要使用"我的技术支持"中的所有功能,必须先进行注册。

有关"我的技术支持", 敬请访问 Internet

(https://support.industry.siemens.com/My/ww/zh/documentation)。

"我的技术支持" - CAx 数据

在"我的技术支持"中的 CAx 数据区域,可以访问 CAx 或 CAe 系统的最新产品数据。

仅需轻击几次,用户即可组态自己的下载包。

在此,用户可选择:

- 产品图片、二维码、3D模型、内部电路图、EPLAN宏文件
- 手册、功能特性、操作手册、证书
- 产品主数据

有关"我的技术支持" - CAx 数据,敬请访问 Internet (https://support.industry.siemens.com/my/ww/zh/CAxOnline)。

应用示例

应用示例中包含有各种工具的技术支持和各种自动化任务应用示例。自动化系统中的多个组件完美协作,可组合成各种不同的解决方案,用户无需再关注各个单独的产品。

有关应用示例, 敬请访问 Internet

(https://support.industry.siemens.com/sc/ww/zh/sc/2054)。

TIA Selection Tool

通过 TIA Selection Tool,用户可选择、组态和订购全集成自动化 (TIA) 中所需设备。该工具是 SIMATIC Selection Tool

的新一代产品,在一个工具中完美集成了自动化技术的各种已知组态程序。

通过 TIA Selection Tool,用户可以根据产品选择或产品组态生成一个完整的订购列表。

有关 TIA Selection Tool, 敬请访问 Internet

(https://new.siemens.com/global/en/productservices/automation/topics/tia/tia-selection-tool.html)。

SIMATIC Automation Tool

通过 SIMATIC Automation Tool,可同时对各个 SIMATIC S7 站进行调试和维护操作(作为批量操作),而无需打开 TIA Portal。

SIMATIC Automation Tool 支持以下各种功能:

- 扫描 PROFINET/以太网系统网络,识别所有连接的 CPU
- 为 CPU 分配地址(IP、子网、网关)和站名称(PROFINET 设备)
- 将日期和已转换为 UTC 时间的编程设备/PC 时间传送到模块中
- 将程序下载到 CPU 中
- RUN/STOP 模式切换
- 通过 LED 指示灯闪烁进行 CPU 定位
- 读取 CPU 错误信息
- 读取 CPU 诊断缓冲区
- 复位为出厂设置
- 更新 CPU 和所连接模块的固件

SIMATIC Automation Tool 可从 Internet

(https://support.industry.siemens.com/cs/ww/zh/view/98161300) 上下载。

PRONETA

SIEMENS PRONETA (PROFINET

网络分析服务)可在调试过程中分析工厂网络的具体状况。PRONETA 具有以下两大核心功能:

- 通过拓扑总览功能,自动扫描 PROFINET 和所有连接的组件。
- 通过 IO 检查,快速完成工厂接线和模块组态测试。

SIEMENS PRONETA 可从 Internet

(https://support.industry.siemens.com/cs/ww/zh/view/67460624) 上下载。

SINETPLAN

SINETPLAN 是西门子公司推出的一种网络规划工具,用于对基于 PROFINET 的自动化系统和网络进行规划设计。使用该工具时,在规划阶段即可对 PROFINET 网络进行预测型的专业设计。此外,SINETPLAN

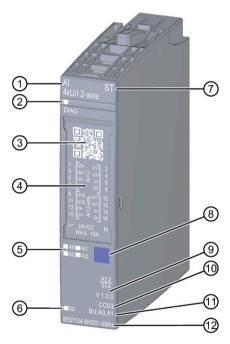
还可用于对网络进行优化,检测网络资源并合理规划资源预留。这将有助于在早期的规划操作阶段,有效防止发生调试问题或生产故障,从而大幅提升工厂的生产力水平和生产运行的安全性。

优势概览:

- 端口特定的网络负载计算方式,显著优化网络性能
- 优异的现有系统在线扫描和验证功能,生产力水平大幅提升
- 通过导入与仿真现有的 STEP 7 系统, 极大提高调试前的数据透明度
- 通过实现长期投资安全和资源的合理应用,显著提高生产效率

SINETPLAN 可从 Internet (https://www.siemens.com/sinetplan) 上下载。

产品总览


特性 2.1

订货号

6ES7134-6HD01-0BA1 (每包数量: 1 个)

6ES7134-6HD01-2BA1 (每包数量: 10 个)

模块视图

- ① 模块类型和名称
- ⑦ 功能类别
- ② 诊断 LED 指示灯
- ⑧ 用于指示模块类型的颜色标签
- ③ 二维码
- ⑨ 功能和固件版本
- ④ 接线图
- ⑩ 用于选择颜色标识标签的颜色代码
- ⑤ 通道状态 LED 指示灯
- ⑪ BU 类型
- ⑥ 电源电压 LED
- ⑫ 订货号

指示灯

图 2-1 模块 AI 4×U/I 2-wire ST 的视图

2.1 特性

特性

该模块具有下列技术特性:

- 带有 4 个输入的模拟量输入模块
- 可为每个通道设置 2 线制变送器的测量类型电压和电流
- 电压测量的输入范围:
 - ±10 V, 精度 16 位(包括符号)
 - ±5 V, 精度 16 位(包括符号)
 - 1到5V, 精度15位
 - 0到10V,精度15位
- 电流测量的输入范围:
 - 4到20 mA, 精度15位
 - 0到20mA,精度15位
- 与电源电压 L+ 的电气隔离(仅针对电压测量类型)
- 允许的共模电压: 10 V_{ss}
- 可组态诊断 (每模块)

该模块支持以下功能:

表格 2-1 功能与版本的相关性

	硬件版	固件版	8	STEP 7		文件
功能	本	本	TIA Portal	V5.x	PROFINE T IO	PROFIBU S DP
固件更新	FS01	V2.0.0 或更高 版本	V14 或更高版本 + HSP 0239	V5.5 SP3 或更高版本 + HSP 0227 V7.0 或更高版本	√	√
标识数据 I&MO 到 I&M3	FS01	V2.0.0 或更高 版本	V14 或更高版本 + HSP 0239	V5.5 SP3 或更高版本 + HSP 0227 V7.0 或更高版本	V	√

	硬件版	固件版	9	STEP 7		文件
功能	本	本	TIA Portal	V5.x	PROFINE T IO	PROFIBU S DP
在 RUN 下重新组态	FS01	V2.0.0 或更高 版本	V14 或更高版本 + HSP 0239	V5.5 SP3 或更高版本 + HSP 0227 V7.0 或更高版本	√	√
PROFlenergy	FS01	V2.0.0 或更高 版本	V14 或更高版本 + HSP 0239	V5.5 SP3 或更高版本 + HSP 0227 V7.0 或更高版本	√	√
值状态	FS01	V2.0.0 或更高 版本	V14 或更高版本 + HSP 0239	V5.5 SP3 或更高版本 + HSP 0227 V7.0 或更高版本	√	√

附件

以下附件必须单独订购:

- 标签条
- 颜色标识标签
- 参考标识标签
- 屏蔽层连接器

另请参见

有关附件的更多信息,请参见"ET 200SP 分布式 I/O 系统 (https://support.industry.siemens.com/cs/CN/zh/view/58649293)"系统手册。

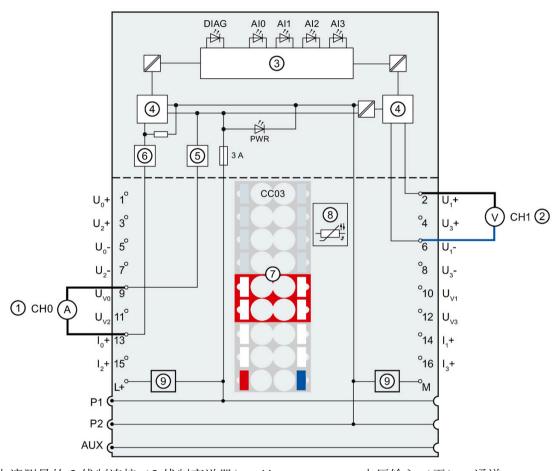
接线 3

3.1 接线图和方框图

本章节将介绍 AI 4xU/I 2-wire ST 模块的方框图和端子分配方式。

有关 BaseUnit 的接线信息,请参见《ET 200SP 分布式 I/O 系统 (http://support.automation.siemens.com/WW/view/zh/58649293)》系统手册。

说明


各通道可采用不同的接线方式或组合使用。

说明

模块的负载组必须以浅色 BaseUnit 开始。在组态过程中,请务必遵循这一原则。

接线: 2 线制连接的电压和电流测量

下图给出了 BU 类型为 A0/A1 的 BaseUnit 上模拟量输入模块 AI 4xU/I 2-wire ST 的方框图和端子分配示例。

1	电流测量的 2 线制连接(2 线制变送器)	U _n +	电压输入(正),通道 n
2	电压测量的 2 线制连接	U _n -	电压输入(负),通道 n
3	背板总线接口	U_{vn}	电源电压,通道 n
4	模数转换器 (ADC)	l _n +	电流输入(正),通道 n
(5)	短路保护	L+	24 V DC(仅为浅色 BaseUnit 供电)
6	电流极限	M	接地
7	颜色编码 CC03 的颜色编码标签(可选)	P1、P2、AU	内部自组装电压总线
		X	连接至左侧(深色 BaseUnit) 连接至左侧中断(浅色 BaseUnit)
8	仅记录 BU 类型 A1	DIAG	诊断 LED 指示灯(绿色、红色)
	的温度(模块不支持此功能)		
9	电源电压滤波电路(当前仅为浅色 BaseUnit)	Al0、Al1、Al 2、Al3	通道状态 LED 指示灯(绿色)
		PWR	电源 LED 指示灯(绿色)

图 3-1 电压和电流测量的接线和方框图

参数/地址空间

4.1 测量类型和范围

模拟量输入模块 AI 4×U/I 2-wire ST 具有以下测量范围:

表格 4-1 测量范围

测量类型	测量范围	分辨率
电压	± 5 V	16 位(包含符号)
	±10 V	16 位(包含符号)
	1 到 5 V	15 位
	0 到 10 V	15 位
电流(2 线制变送器)	0 mA 到 20 mA	15 位
	4 到 20 mA	15 位

有关测量范围以及上溢、超出上限等表格,请参见"模拟值表示(页 41)"章节。

4.2 参数

Al 4xU/I 2-wire ST 的参数

在 STEP 7

中进行组态时,可通过各种参数指定该模块的特性。下表列出了可组态的参数。可组态参数的有效范围取决于组态的类型。支持以下组态方式:

- 使用 ET 200SP CPU 进行统一操作
- 在 ET 200SP 系统中的 PROFINET IO 上进行分布式操作
- 在 ET 200SP 系统中的 PROFIBUS DP 上进行分布式操作

在用户程序中指定参数时,使用"WRREC"指令通过数据记录将参数传送到模块(参见"参数分配和参数数据记录的结构 (页 36)"部分)。

可进行以下参数设置:

表格 4-2 可组态的参数及默认值(GSD 文件)

参数	值范围	默认值	在 RUN 模式下组	有效的组态软件,如 STEP 7 (TIA Portal)	
			态	PROFINET I O GSD 文件	PROFIBUS DP GSD 文件
诊断, 电源电压 L+ 缺失	禁用启用	禁用		模块	模块
诊断, 接地短路	禁用启用	禁用	√	模块	模块
诊断 上溢	禁用启用	禁用	√	模块	模块
诊断 下溢	禁用启用	禁用	√	模块	模块
诊断, 断路	禁用启用	禁用	√	模块	模块

4.2 参数

参数			在 RUN 模式下组	有效的组态软件,如 STEP 7 (TIA Portal)		
			态	PROFINET I O GSD 文件		
测量类型/范围	 禁用 电压 +/- 5 V 电压 +/- 10 V 电压 15 V 电压 0 到 10 V 电流 (2 线制变送器) 0 到 20 mA 电流 (2 线制变送器) 4 到 20 mA 	电流(2 线制变送器)4到 20 mA	√	通道	通道	
滤波	 - 弱 中等 强	-	√	通道	通道	

参数	值范围		在 RUN 模式下组	有效的组态软件,如 STEP 7 (TIA Portal)	
			态	PROFINET I O GSD 文件	PROFIBUS DP GSD 文件
干扰频率抑制 2	 60 Hz 50 Hz¹ 16.6 Hz 	50 Hz	√	通道	模块3
电位组	使用左侧模块(插到 深色 BaseUnit 中的模块)中的电位 组 启用新的电位组(插 入浅色 BaseUnit 中的模块)	使用左侧模 块的电位组	-	模块	模块

^{1 ...}干扰频率抑制: 在 50 Hz 的滤波中会自动包含 400 Hz 时的噪音。

2

"干扰频率抑制"参数的设置将直接影响该通道的转换时间。因此,该模拟值同样也受"滤波"参数的过滤设置影响。

² 由于 PROFIBUS GSD 组态的参数个数限制为每个 ET 200SP 站不超过 244 字节,因此参数分配选项会受到限制。I/O 模块的参数长度为 5 个字节(带有 PROFIBUS GSD 组态)。必要时,可使用数据记录 128 设置该参数,参见附录"参数集设置"。

说明

未使用的通道

在参数分配中禁用未使用的通道以缩短模块周期时间。

禁用的通道始终返回值 7FFFH。

4.3 参数说明

4.3 参数说明

诊断: 电源电压 L+ 缺失

如果电源电压 L+ 缺失或不足,则启用该诊断。

诊断,接地短路

如果编码器接地短路或者输入与编码器电源发生短路,则启用该诊断。在两个输入信号都发生短路时,在范围 1 到 5 V 内也检测到短路。

可以同时激活短路和下溢诊断。但如果同时发生这两种诊断事件,短路诊断会抑制下溢诊断。短路输出为诊断事件。

诊断: 上溢

如果测量值超出范围上限,则启用该诊断。

诊断: 下溢

如果测量值低于范围下限,则启用该诊断。

诊断,断路

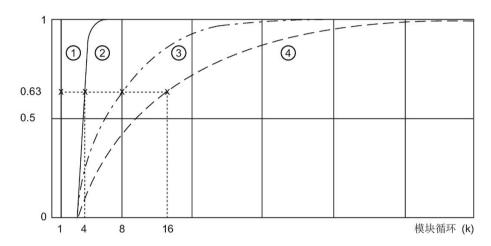
如果模块无电流或电流过小,无法在相关输入处进行测量,则启用该诊断。

可以同时激活断路和下溢诊断。如果同时发生这两种诊断事件,则将输出断路诊断信息。

测量类型/范围

另请参见"测量类型和范围 (页 16)"部分。

滤波


各个测量值使用数字滤波进行滤波。滤波可设为4个级别。

滤波时间 = 模块循环次数 (k) x 模块循环时间。

下图显示了滤波模拟值接近 100%

时所经历的模块周期数,具体取决于对滤波的组态。这适用于模拟量输入的每次信号变化

0

- ① 无滤波 (k = 1)
- ② 弱 (k = 4)
- ③ 中等 (k = 8)
- ④ 强 (k = 16)

图 4-1 Al 4xU/l 2-wire ST 的滤波

干扰频率抑制

抑制会影响模拟量输入模块的干扰,这类干扰由使用的交流电压网络的频率引起。

交流电压网络的频率可能会对测量值产生负面影响,尤其在低压范围内使用热电偶进行测量时。通过该参数,用户指定设备中起主要作用的电源频率。

4.3 参数说明

电位组

电位组由 ET 200SP 站内一组直接相邻的 I/O 模块组成,这些模块由公共电源进行供电。电位组从浅色 BaseUnit 开始,并通过该 BaseUnit 为电位组中的所有模块供电。浅色 BaseUnit 用于断开三个自装配电压总线 P1、P2 和 AUX 与左侧相邻模块的连接。

该电位组中的所有附加 I/O 模块都将插入深色 BaseUnit 中,并从左侧相连的模块开始,形成自装配电压总线 P1、P2 和 AUX 的电位。电位组以深色 BaseUnit 结束。在站组态中,后面跟随一个浅色的 BaseUnit 或服务模块。

4.4 地址空间

组态选项

可进行以下组态:

- 组态 1: 不带值状态
- 组态 2: 带有值状态

评估值状态

如果启用了模拟量模块的值状态,那么将占用输入地址空间中另外 1 个字节。该字节中的位 0 到 3 分配给通道。 它们提供有关模拟值有效性的信息。

位 = 1: 通道当前无故障。

位 = 0: 通道被禁用或模块上有故障/错误。

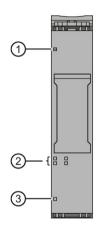
如果此模块的通道上发生故障/错误,则所有通道的值状态为0。

地址空间

下图显示了带有值状态(质量信息 (QI))的 AI 4×U/I 2-wire ST 的地址空间分配。 只有在启用值状态之后,才能使用值状态的地址。

在过程映像输入 (PII) 中分配




图 4-2 具有值状态的 AI 4×U/I 2-wire ST 的地址空间

中断/诊断报警

5.1 状态和错误指示灯

LED 指示灯

下图显示了 AI 4xU/I 2-wire ST 的 LED 指示灯(状态和错误指示灯)。

- ① **DIAG** (绿色/红色)
- ② 通道状态 (绿色)
- ③ PWR (绿色)

图 5-1 LED 指示灯

LED 指示灯的含义

下表列出了状态和错误指示灯的含义。有关诊断报警的补救措施,请参见"诊断报警 (页 26)"部分。

DIAG LED 指示灯

表格 5-1 DIAG LED 故障/错误指示灯

DIAG LED 指示灯	含义
灭	ET 200SP 的背板总线电源不正常
滨 闪烁	未分配模块参数
■ 亮	己分配模块参数但没有进行模块诊断
┆ 闪烁	己分配模块参数且进行了模块诊断

通道状态 LED 指示灯

表格 5-2 通道状态 LED 指示灯

通道状态 LED 指示灯	含义
灭	通道已禁用
■ 亮	通道已激活

PWR LED 指示灯

表格 5-3 PWR LED 状态指示灯

PWR LED 指示灯	含义
灭	电源电压 L+ 缺失
亮	有电源电压 L+

5.2 中断

5.2 中断

模拟量输入模块 AI 4×U/I 2-wire ST 支持诊断中断。

诊断中断

在发生以下情况时该模块将生成诊断中断:

- 通道临时不可用
- 短路(电流,电压1到5V)
- 断路(4到20 mA电流)
- 超出下限
- 超出上限
- 错误
- 参数分配错误
- 电源电压缺失

5.3 诊断报警

为每个诊断事件生成一个诊断报警,同时模块上的 DIAG-LED 指示灯闪烁。例如,可从 CPU 的诊断缓冲区中读取诊断报警。可通过用户程序评估错误代码。

表格 5-4 诊断报警、含义以及更正措施

诊断报警	错误代码	含义	解决方法	
短路(电流)*	1 _H	传感器电源接地	更正模块/编码器调节	
		传感器电源的输入		
短路(1到5V)**	1 _H	输入信号短路	更正模块/编码器调节	
		输入开路	连接输入	
断路(电流)**	6н	编码器电路的阻抗过高。	使用其它类型的编码器或更改接 线方式,例如,使用横截面积较 大的电缆	
		模块与传感器之间断路	连接电缆	
		通道未连接 (断开)	• 禁用诊断	
			• 连接传感器触点	

诊断报警	错误代码	含义	解决方法	
超出上限	7 _H	值超出上限。	更正模块/编码器调节	
超出下限	8н	值低于下限。	更正模块/编码器调节	
错误	9 _H	出现内部模块错误。	更换模块	
参数分配错误	10 _H	• 模块无法评估该通道的参数。	更正参数分配	
		• 参数分配不正确。		
电源电压缺失	11 _H	电源电压 L+ 缺失或不足	• 检查 BaseUnit 的电源电压 L+	
			• 检查 BaseUnit 的类型	
通道临时不可用	1F _H	正在进行固件更新或更新已取消。	• 等待固件更新。	
		在此状态下,模块不读取任何过程值	• 重新开始固件更新。	
		0		

编码器接地电源电路和/或通道编码器电源的输入信号短路对其它通道存在短暂影响(持续时间 < 0.5 s)。因此,也会针对不受影响的通道报告短路诊断且/或会暂时影响测量值。

**

激活滤波后,模块可跨多个模块周期计算测量值。仅当滤波后的测量值稳定时,模块才会生成短路或断路诊断。短路或断路故障排除后,模块将根据设置的滤波级别再次提供稳定的测量值。

技术数据

6.1 技术数据

AI 4×U/I 2-wire ST 的技术数据

下表列出了截至 2020 年 6 月的技术规范。有关每日更新的技术规范数据表,敬请访问 Internet (https://support.industry.siemens.com/cs/ww/zh/pv/6ES7134-6HD01-0BA1/td?dl=zh)。

商品编号	6ES7134-6HD01-0BA1	
一般信息		
硬件功能状态	FS02 以上版本	
固件版本		
• 可更新固件	是	
可用的基本单元	BU 类型 A0、A1	
模块特有彩色标牌板的颜色代码	CC03	
产品功能		
● I&M 数据	是; I&M0 至 I&M3	
• 时钟同步模式	否	
• 可变测量范围	否	
附带程序包的		
 STEP 7 TIA 端口,可组态 / 已集成,自版本 	V14 / -	
• STEP 7 可组态/ 已集成, 自版本	V5.6 以上版本	
• PCS 7 可组态/集成式,自版本	V8.1 SP1	
 PROFIBUS 版本 GSD 版 / GSD 修订版以上 	各修订版本 3 和 5 以上的 GSD 文件	
 PROFINET 版本 GSD 版 / GSD 修订版以上 	GSDML V2.3	
运行模式		
• 过采样	否	

商品编号	6ES7134-6HD01-0BA1
• MSI	否
运行中的 CiR 配置	
可在 RUN 模式下更改参数分配	是
可在 RUN 模式下校准	否
电源电压	
额定值 (DC)	24 V
允许范围,下限 (DC)	19.2 V
允许范围,上限 (DC)	28.8 V
反极性保护	是
输入电流	
耗用电流,最大值	37 mA; 无传感器电源
24 V 传感器供电	
• 24 V	是
• 短路保护	是
• 输出电流,最大值	20 mA; 每条通道最大 50 mA, 持续时间 < 10 s
功率损失	
功率损失,典型值	0.85 W; 无传感器电源电压
地址范围	
每个模块的地址空间	
• 每个模块的地址空间,最大值	8 byte; + 1 个字节用于 QI 信息
硬件扩展	
自动编码	
• 机械编码键	是
为不同的接口类型选择基础单元	
• 两线制连接	BU 类型 A0、A1
模拟输入	
模拟输入端数量	4; 差动输入
电压输入允许的输入电压(毁坏限制) ,最大值	30 V

6.1 技术数据

商品编号	6ES7134-6HD01-0BA1	
电流输入允许的输入电流(毁坏限制) ,最大值	50 mA	
循环时间(所有通道) 最小值	基本转换时间和附加处理时间之和(视激活通道的参数设置而定)	
输入范围(额定值),电压		
● 0至+10V	是; 15 位	
- 输入电阻 (0至10V)	120 kΩ	
● 1V至5V	是; 15 位	
- 输入电阻 (1 V 至 5 V)	120 kΩ	
● -10 V 至 +10 V	是;包括符号在内 16 位	
- 输入电阻 (-10 V 至 +10 V)	120 kΩ	
● -5 V 至 +5 V	是;包括符号在内 16 位	
- 输入电阻 (-5 V 至 +5 V)	120 kΩ	
输入范围(额定值),电流		
• 0至 20 mA	是; 15 位	
- 输入电阻 (0至 20 mA)	100 Ω; + 大约 0.7 V 二极管正向电压	
• 4 mA 至 20 mA	是; 15 位	
- 输入电阻 (4 mA 至 20 mA)	100 Ω; + 大约 0.7 V 二极管正向电压	
导线长度		
• 屏蔽,最大值	1 000 m; 200 m,电压测量	
输入端的模拟值构成		
测量原理	集成 (Sigma-Delta)	
集成和转换时间/每通道分辨率		
带有过调制的分辨率(包括符号在内的位数),最大值	16 bit	
• 可参数化的集成时间	是	
• 对于干扰频率 f1 (单位 Hz)的干扰电压抑制	16.6/50/60 Hz	
• 转换时间(每个通道)	180 / 60 / 50 ms	

商品编号	6ES7134-6HD01-0BA1	
测量值滤波		
• 平滑级数	4; 无; 4/8/16 倍	
• 可参数化	是	
传感器		
信号传感器连接		
• 用于电压测量	是	
对于作为两线制测量变送器时的电流 测量	是	
- 双线测量变频器的负载,最大值	650 Ω	
• 对于作为四线制测量变送器时的电流测量	否	
误差/精度		
线性错误(与输入范围有关),(+/-)	0.01 %	
温度错误(与输入范围有关),(+/-)	0.005 %/K	
输入端之间的串扰,最小值	50 dB	
25 °C	0.05 %	
时起振状态下的重复精度(与输入范围 有关) ,(+/-)		
整个温度范围内的操作错误限制		
• 电压,与输入范围有关,(+/-)	0.5 %	
• 电流,与输入范围有关,(+/-)	0.5 %	
基本错误限制(25°C 时的操作错误限制)		
• 电压,与输入范围有关,(+/-)	0.3 %	
• 电流,与输入范围有关,(+/-)	0.3 %	
故障电压抑制 f = n x (f1 +/- 1 %),f1 = 干扰频率		
串联干扰(干扰峰值 < 输入范围的额定值),最小值	70 dB	
• 并联电压,最大值	10 V	
• 共模干扰,最小值	90 dB	

6.1 技术数据

报警/诊断/状态信息 是 技警 上 心断报警 是 心板限值报警 否 诊断信息 是 电源电压监控 是 知数 是; 4至20 mA 时 是 证式经运行时: 传感器电源对地短路可感器电源输入端短路 ● 累积故障 是 ● 激出/下溢 是 诊断显示 LED 是; 绿色 LED ● 电源电压监控 (PWR-LED) 是; 绿色 LED ● 通道状态显示 是; 绿色 LED ● 用于通道诊断 否 ● 用于模块诊断 是; 绿色/红色 LED	
报警 6 诊断报警 是 6 极限值报警 否 诊断信息 是 4至 20 mA 时 6 短路 是 4至 20 mA 时 6 提出 2至 20 mA 时 <	
 诊断报警 极限值报警 检断信息 电源电压监控 题络 是; 4至20mA时 是; 1至5V 或双线运行时: 传感器电源对地短路或感器电源输入端短路 累积故障 溢出/下溢 之 诊断显示 LED 电源电压监控 (PWR-LED) 通道状态显示 用于通道诊断 	
 ● 极限值报警 查断信息 ● 电源电压监控 ● 断线 是; 4 至 20 mA 时 是; 1 至 5 V 或双线运行时:传感器电源对地短路可感器电源输入端短路 ● 累积故障 ● 溢出/下溢 是 诊断显示 LED ● 电源电压监控 (PWR-LED) ● 通道状态显示 ● 用于通道诊断 	
诊断信息 是 • 电源电压监控 是 • 断线 是; 4 至 20 mA 时 • 短路 是; 1 至 5 V 或双线运行时: 传感器电源对地短路或感器电源输入端短路 • 累积故障 是 • 溢出/下溢 是 诊断显示 LED 是; 绿色 LED • 通道状态显示 是; 绿色 LED • 用于通道诊断 否	
 电源电压监控 断线 短路 是; 4至20 mA 时 是; 1至5 V 或双线运行时:传感器电源对地短路或感器电源输入端短路 累积故障 溢出/下溢 建 建 是 参断显示 LED 电源电压监控 (PWR-LED) 通道状态显示 用于通道诊断 	
 断线 短路 是; 4至20 mA 时 是; 1至5 V 或双线运行时: 传感器电源对地短路或感器电源输入端短路 累积故障 溢出/下溢 是 诊断显示 LED 电源电压监控 (PWR-LED) 通道状态显示 用于通道诊断 否	
 短路 是; 1至5V 或双线运行时: 传感器电源对地短路或感器电源输入端短路 累积故障 溢出/下溢 建 专断显示 LED 电源电压监控 (PWR-LED) 通道状态显示 用于通道诊断 否	
或双线运行时: 传感器电源对地短路或感器电源输入端短路 ● 累积故障 是 ● 溢出/下溢 是 诊断显示 LED 是; 绿色 LED ● 电源电压监控 (PWR-LED) 是; 绿色 LED ● 通道状态显示 是; 绿色 LED ● 用于通道诊断 否	
・ 溢出/下溢 是 诊断显示 LED 是; 绿色 LED ・ 通道状态显示 是; 绿色 LED ・ 用于通道诊断 否	传
诊断显示 LED • 电源电压监控 (PWR-LED) 是; 绿色 LED • 通道状态显示 是; 绿色 LED • 用于通道诊断 否	
 电源电压监控 (PWR-LED) 通道状态显示 用于通道诊断 是; 绿色 LED 否 	
通道状态显示用于通道诊断是; 绿色 LED否	
● 用于通道诊断 否	
● 用于模块诊断 是; 绿色/红色 LED	
电位隔离	
通道的电势分离	
在通道之间是;采用双线电流输入端组和电压输入端组间通道组的方式	之
• 在通道和背板总线之间 是	
• 在通道和电子元件电源电压之间 是; 仅电压输入端时	
允许的电位差	
输入端之间 (UCM) 10 V DC	
绝缘	
绝缘测试,使用 707 V DC (测试类型)	

商品编号	6ES7134-6HD01-0BA1	
标准、许可、证书		
适用于符合 AMS2750 标准的应用程序	是; 符合性声明,参见在线支持文档 109757262	
适用于符合 CQI-9 标准的应用程序	是	
环境要求		
运行中的环境温度		
• 水平安装,最小值	-30 °C	
• 水平安装,最大值	60 °C	
• 垂直安装,最小值	-30 °C	
• 垂直安装,最大值	50 °C	
参考海平面的运行高度		
• 最大海拔安装高度	5 000 m; 安装高度 > 2000 m 时受限,参见手册	
尺寸		
宽度	15 mm	
高度	73 mm	
深度	58 mm	
重量		
重量,约	31 g	

尺寸图

请参见手册"ET 200SP BaseUnit

(http://support.automation.siemens.com/WW/view/zh/59753521)"

参数数据记录

A.1 使用 GSD 文件进行组态时的相关性

在使用 GSD 文件组态模块时,请注意某些参数的设置之间都相互关联。

使用 PROFINET GSD 文件进行组态

表中列出了 PROFINET 测量类型和测量范围的属性及其相关性。

测量类型	测量范围	诊断				
		电源电压 L+ 缺失	M 短路	上溢	下溢	断路
禁用		*	*	*	*	*
电压	±5 V		-		\checkmark	-
	±10 V	\checkmark	-	\checkmark	\checkmark	-
	15 V	\checkmark	\checkmark	\checkmark	\checkmark	-
	010 V	\checkmark	-	\checkmark	\checkmark	-
电流	020 mA	\checkmark	\checkmark	\checkmark	\checkmark	-
(2 线制变送器)	420 mA		$\sqrt{}$		$\sqrt{}$	√

^{√=}属性启用,-=属性**禁用**,*=与属性无关

使用 PROFIBUS GSD 文件进行组态

表中列出了 PROFIBUS 测量类型和测量范围的属性及其相关性。

测量类型	测量范围	诊断			
		电源电压 L+ 缺失	M 短路	上溢/ 下溢	断路
禁用		*	*	*	*
电压	±5 V	\checkmark	-	\checkmark	-
	±10 V	\checkmark	-	\checkmark	-
	15 V	\checkmark	$\sqrt{}$	\checkmark	-
	010 V	\checkmark	-	\checkmark	-
电流	020 mA	\checkmark	√	\checkmark	-
(2 线制变送器)	420 mA	√	√	√	√

^{√=}属性启用,-=属性**禁用**,*=与属性无关

A.2 参数分配和参数数据记录的结构

A.2 参数分配和参数数据记录的结构

模块数据记录的结构相同,与使用 PROFIBUS DP 或 PROFINET IO 组态模块无关。在用户程序中,可使用数据记录 128 重新组态该模块,而无需考虑具体编程。这也就意味着,即使使用 PROFIBUS-GSD 组态模块,也可使用该模块的所有功能。

用户程序中的参数分配

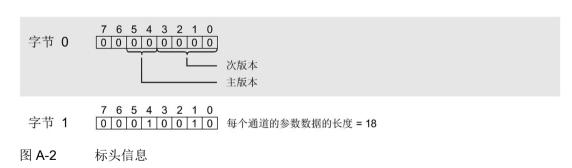
在 RUN 模式下,可以重新分配模块参数。例如,在 RUN 模式下,可更改选定通道的电压或电流值,而不会影响其它通道。

在 RUN 模式下更改参数

使用指令"WRREC",可通过数据记录 128 将参数传送到模块中。STEP 7 中设置的参数在 CPU 中保持不变。即,STEP 7 中设置的参数在重新启动后仍然有效。

输出参数 STATUS

如果使用"WRREC"指令传送参数时发生错误,模块将使用先前分配的参数继续运行。ST ATUS 输出参数中包含有一个对应的错误代码。


有关"WRREC"指令的说明和错误代码,请参见STEP 7 在线帮助。

数据记录 128 的结构

标头信息

下图显示了标头信息的结构。

A.2 参数分配和参数数据记录的结构

参数

下图显示了通道 0 到 3 的参数结构。

将相应的位设置为"1",即可启用该参数。

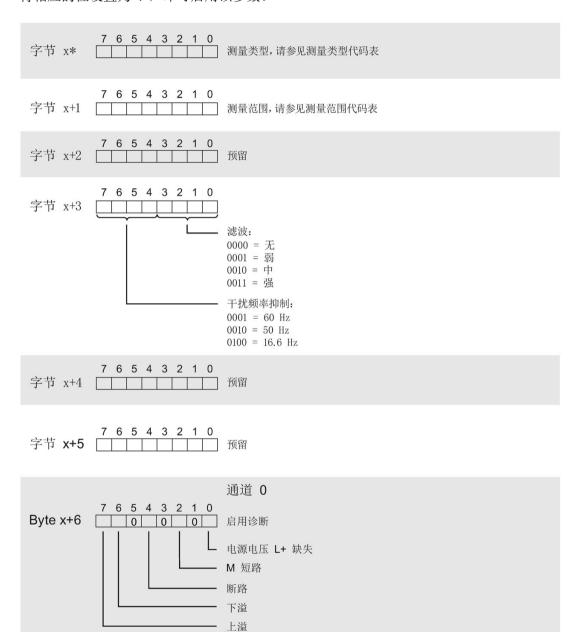


图 A-3 通道 0 到 3 中字节 x 到 x+17 的结构

测量类型代码

下表列出了该模拟量输入模块的测量类型代码。必须在字节 x 处输入这些代码(请参见上图)。

表格 A-1 测量类型代码

测量类型	编码
禁用	0000 0000
电压	0000 0001
电流,2线制传感器	0000 0011

测量范围代码

下表列出了该模拟量输入模块的测量范围代码。必须在字节 **x+1** 处输入这些代码(请参见上图)。

表格 A-2 测量范围代码

测量类型	编码
电压	
±5 V	0000 1000
±10 V	0000 1001
1 到 5 V	0000 1010
0 到 10 V	0000 1011
电流	
0 到 20 mA	0000 0010
4 到 20 mA	0000 0011

A.3 传送数据记录模拟量输入时出错

A.3 传送数据记录模拟量输入时出错

传送数据记录时出错

该模块通常会检查待发送数据记录的所有值。仅当所有值都正确传送无错误时,该模块才使用数据记录中的值。

如果 STATUS 参数中存在错误,则写入数据记录的 WRREC 指令将返回相应的错误代码(另请参见 STEP 7 在线帮助中的"STATUS"参数说明)。

下表列出了模块特定的错误代码以及参数数据记录 128 中的含义。

STATUS 参数中的错误代码(十六进制)			(进制)	含义	解决方法					
字节 0	字节 1	字节 2	字节3							
DF	80	В0	xx	数据记录编号未知。	输入一个有效的数据记录编号。					
DF	80	B1	xx	数据记录的长度错误	输入一个有效的数据记录长度。					
DF	80	B2	xx	插槽无效或无法访问。	检查站,确定模块是否已插入或已移除。检查为指令 WRREC 分配的参数值。					
DF	80	E0	xx	版本错误,或标头信息错误	更正版本、长度或参数块的数量					
DF	80	E1	01	预留位置位	检查模块的参数。					
DF	80	E1	02	为操作模式设置的诊断启用位 无效	检查模块的参数。					
DF	80	E1	05	测量范围 / 测量类型的编码设置无效	检查模块的参数。					
DF	80	E1	08	干扰频率抑制 / 积分时间的编码设置无效	检查模块的参数。					
DF	80	E1	09	滤波编码无效。	检查模块的参数。					

模拟值表示

本附录介绍了模拟量模块支持的所有测量范围的模拟值。

测量值精度

模拟值的精度可因模拟量模块及其模块分配参数而异。

下表给出了模拟值的二进制表示及其相关的十进制和十六进制单位。

各模拟值均以与变量左对齐的方式写入。标记为"x"的位将设置为"0"。

表格 B-1 模拟值的精度

以位表示的精度 (包括符号)	Û	<u>t</u>	模拟值						
	十进制	十六进制	高位字节	低位字节					
14	4	4 _H	符号0000000	0 0 0 0 0 1 x x					
15	2	2н	符号0000000	0000001x					
16	1	1 _H	符号0000000	00000001					

B.1 输入范围表示

B.1 输入范围表示

在以下各表中,可以找到双极性和单极性输入范围的数字化表示。精度为16位。

表格 B-2 双极性输入范围

十进制值	测量值(以 %表示)	数据	数据字										范围					
		2 ¹⁵	214	213	212	211	210	29	28	27	2 ⁶	2 ⁵	24	23	2 ²	21	20	
32767	>117.589	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	上溢
32511	117.589	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	超出范围
27649	100.004	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	1	
27648	100.000	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	
1	0.003617	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
0	0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	额定范围
-1	-0.003617	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
-27648	-100.000	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	
-27649	-100.004	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	低于范围
-32512	-117.593	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
-32768	<-117.593	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	下溢

表格 B-3 单极性输入范围

十进制值	测量值(以 %表示)	数排	数据字										范围					
		215	214	213	212	211	210	29	28	27	26	2 ⁵	24	23	2 ²	21	20	
32767	>117.589	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	上溢
32511	117.589	0	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	超出范围
27649	100.004	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	1	
27648	100.000	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	
1	0.003617	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	额定范围
0	0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-1	-0.003617	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	低于范围
-4864	-17.593	1	1	1	0	1	1	0	1	0	0	0	0	0	0	0	0	
-32768	<-17.593	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	下溢

B.2 电压测量范围内模拟值的表示

B.2 电压测量范围内模拟值的表示

下表列出了各种电压测量范围的十进制和十六进制值(代码)。

表格 B- 4 电压测量范围(±10 V 和 ±5 V)

值		电压测量范围	范围	
十进制	十六进制	±10 V	±5 V	
32767	7FFF	>11.759 V	>5.879 V	上溢
32511	7EFF	11.759 V	5.879 V	超出范围
27649	6C01			
27648	6C00	10 V	5 V	额定范围
20736	5100	7.5 V	3.75 V	
1	1	361.7 μV	180.8 μV	
0	0	0 V	0 V	
-1	FFFF			
-20736	AF00	-7.5 V	-3.75 V	
-27648	9400	-10 V	-5 V	
-27649	93FF			低于范围
-32512	8100	-11.759 V	-5.879 V	
-32768	8000	<-11.759 V	<-5.879 V	下溢

表格 B-5 电压测量范围 (1 V 到 5 V 及 0 V 到 10 V)

值		电压测量范围	范围	
十进制	十六进制	1到5V	0 到 10 V	
32767	7FFF	>5.704 V	>11.759 V	上溢
32511	7EFF	5.704 V	11.759 V	超出范围
27649	6C01			
27648	6C00	5 V	10 V	额定范围
20736	5100	4 V	7.5 V	
1	1	1 V + 144.7 μV	0 V + 361.7 μV	
0	0	1 V	0 V	
-1	FFFF			低于范围 **
-4864	ED00	0.296 V	-1.759 V *	
-32768	8000	<0.296 V	<-1.759 V *	下溢 **

^{*} 仅当组态了模块 (6ES7134-6GD01-0BA1) 固件版本 V2.0.0 及更高版本时, 才支持负值。

^{**} 如果组态了早期模块 (6ES7134-6GD00-0BA1),则不支持低于范围/下溢。

B.3 电流测量范围内模拟值的表示

B.3 电流测量范围内模拟值的表示

下表列出了各种电流测量范围的十进制和十六进制值(代码)。

表格 B-6 电流测量范围(0到 20 mA和4到 20 mA)

值		电流测量范围		范围
十进制	十六进制	0 到 20 mA *	4 到 20 mA	
32767	7FFF	>23.52 mA	>22.81 mA	上溢
32511	7EFF	23.52 mA	22.81 mA	超出范围
27649	6C01			
27648	6C00	20 mA	20 mA	额定范围
20736	5100	15 mA	16 mA	
1	1	723.4 nA	4 mA + 578.7 nA	
0	0	0 mA	4 mA	
-1	FFFF			低于范围
-4864	ED00	-3.52 mA	1.185 mA	
-32768	8000	< -3.52 mA	< 1.185 mA	下溢

^{*}对于"2线制变送器"测量类型,范围"0到20mA"中不可能出现负值。 因此,此处不可能发生超出下限或者下溢。