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A CONSISTENT CONFIDENCE INTERVAL FOR FUZZY CAPABILITY
INDEX

A. PARCHAMI †, M. MASHINCHI †, PARTOVI NIA ‡, §

Abstract. Fuzzy process capability indices are used to determine whether a production process
is capable of producing items within specification tolerance, where instead of precise quality we
have two membership functions for specification limits. In practice these indices are estimated
using sample data and it is of interest to obtain confidence limits for fuzzy capability index
given a sample estimate. After introducing 100(1− α)% fuzzy confidence interval by Parchami

et al. in 2005 and 2006, for fuzzy capability index C̃p, our observation leads us to propound

an open problem about the consistency property for interval estimation of C̃p. In this paper
we redefine some concepts about fuzzy confidence interval and then we show the consistency
property of the fuzzy confidence interval proposed by Parchami et al. in 2006 holds for almost
every α in [0, 1].

Keywords: Fuzzy process capability index, Fuzzy confidence interval, Triangular fuzzy num-
ber, Weak law of large numbers.

1. PRELIMINARIES

When we use the precise specification limits, several statistics such as Cp, Cpm, Cpk and Cpk

are used to estimate the capability of a manufacturing process, which in most cases it is assumed
we have a large sample from a normal population [6]. If we introduce vagueness into specification
limits, we face quite new and interesting problems and the classical capability indices could not
be applied. For such cases Yongting [18] introduced a process capability index Cp as a real
number and it was used by Sadeghpour-Gildeh [16]. Lee investigated a process capability index,
Cpk, as a fuzzy set [7]. Parchami et al. introduced fuzzy process capability indices as fuzzy
numbers and discussed relations that governing between them when specification limits are
fuzzy rather than crisp [11, 12, 14]. The organization of this paper is as follows. In Section
2, we review traditional and fuzzy capability indices and then we review ranking functions in
Section 3. In Section 4, we reintroduce a fuzzy confidence interval for fuzzy capability index
C̃p and then we prove an open problem presented by Parchami at al. in [11, 14]. A conclusion
presented in the final section.

Let R be the set of real numbers. Assume F (R) be the set of all real valued continuous
functions from R to [0, 1], i.e. F (R) = {A|A : R → [0, 1], A is a continuous function}. Also
suppose that

FT (R) = {Ta,b,c|a, b, c ∈ R, a ≤ b ≤ c},
where

Ta,b,c(x) =





(x− a)/(b− a) if a ≤ x < b,
(c− x)/(c− b) if b ≤ x < c,

0 elsewhere.
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Any A ∈ F (R) is called a fuzzy set on R and any Ta,b,c ∈ FT (R) is called a triangular fuzzy
number, which we sometimes write as T (a, b, c). We assume T (a, a, a) be I{a}, the indicator
function of a. The following definition could be given by using the extension principle [10].

Definition 1. Let T (a, b, c) ∈ FT (R), k ∈ R and k ≥ 0. The operation ⊗ on FT (R) is defined
as follows

k ⊗ T (a, b, c) = T (a, b, c)⊗ k = T (ka, kb, kc). (2)

2. PROCESS CAPABILITY INDEX

2.1. Traditional Capability Index. Process capability compares the output of a process with
the specification limits by using capability indices. Frequently, this comparison is made by
forming the ratio of the width between the process specification limits with the width of the
natural tolerance limits, as measured by 6 process standard deviation units. This method leads
to making a statement about how well the process meets specifications [6]. For convenience,
we will denote the upper and lower limits respectively by U and L, rather than using the
more customary USL and LSL notations. We deal with univariate measurements, where its
corresponding random variable X will have mean µ and standard deviation σ. We assume that
the measured characteristic should have or at least approximately normal distribution [6].

The commonly recognized process capability index is

Cp =
U − L

6σ
, (3)

which is ascribed to Juran [4] and it is used when µ = U+L
2 . Substituting the standard deviation

in (3) will provide a point estimate for this index. We would never expect this point estimate
to be exactly equal to the real value of the population parameter. So we often compute a
100(1− α)% confidence interval for our parameter. In practice a confidence bound can be used
to guard against false optimism. Kane [5] suggested the 100(1− α)% confidence interval limits
of Cp as follows 

Ĉp

√
χ2

n−1,α/2

n− 1
, Ĉp

√
χ2

n−1,1−α/2

n− 1


 (4)

where Ĉp = U−L
6s , s =

√
1

n−1

∑
n
j=1(xj − x̄)2 and χ2

n−1,α is the α-quantile of chi-square with
n− 1 degrees of freedom.

2.2. Fuzzy Capability Index. When we have fuzzy specification limits, it will be more realistic
to have a Cp which is also fuzzy. This is due to the fact that a fuzzy capability index could
be more informative than a precise number. For this situation Parchami et al. [14] introduced
capability indices as fuzzy numbers. Suppose that U(au, bu, cu) = T (au, bu, cu) ∈ FT (R) and
L(al, bl, cl) = T (al, bl, cl) ∈ FT (R) be the engineering fuzzy specification limits, where au ≥ cl.
Then the new fuzzy process capability index is defined as follows

C̃p = T

(
au − cl

6σ
,
bu − bl

6σ
,
cu − al

6σ

)
. (5)

Note that C̃p is useful when µ = bu+bl
2 . A generalized version of the above fuzzy capability

index is discussed in [9], where the specification limits are LR fuzzy intervals.

3. RANKING FUNCTION

In the next section we are going to define a fuzzy confidence interval for C̃p, where comparing
fuzzy numbers is emergent and so an ordering approach is needed. A simple but efficient
approach for the ordering of the elements of F (R) is to define a ranking function R : F (R) → R
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which maps each fuzzy number into the real line, where a natural order exists [8]. Define the
order ≤

R
on F (R) by

Ã≥
R

B̃ if and only if R(Ã) ≥ R(B̃),

Ã≤
R

B̃ if and only if R(Ã) ≤ R(B̃),

Ã =
R

B̃ if and only if R(Ã) = R(B̃),

where Ã and B̃ are in F (R). Several ranking functions R have been proposed by researchers to
suit their requirements of the problems under consideration. The ranking function proposed by
Roubens [3, 15] is defined by

Rr(Ã) =
1
2

∫ 1

0

(
inf Ãα + sup Ãα

)
dα. (6)

Lemma 1. If T (a, b, c) ∈ FT (R), then Roubenss ranking function reduces to

Rr (T (a, b, c)) =
2b + a + c

4
.

Proof. See Lemma 4.1 of [11].

Lemma 2. Let m,n ∈ R, T (a, b, c) ∈ FT (R) and 2b + a + c ≥ 0. Then according to Roubenss
ranking function we have

m⊗ T (a, b, c) ≤ n⊗ T (a, b, c) if and only if m ≤ n.

Proof. See Lemma 4.2 of [11].

Lemma 3. Let k ∈ R and T (a, b, c) ∈ FT (R). Then according to Roubenss ranking function

Rr (k ⊗ T (a, b, c)) = k Rr (T (a, b, c)) .

Proof. Proof is obvious, by using Definition 1 and Lemma1

4. FUZZY CONFIDENCE INTERVAL FOR C̃p

Substituting the standard deviation in (5) provides a fuzzy point estimate for C̃p. This point

estimate of C̃p is denoted by
∧
C̃p. Since

∧
C̃p, like other statistics, is subject to sampling variation,

it is critical to compute a confidence interval to provide a range which includes the true C̃p with
high probability.

Definition 2. [11] Let Ã, B̃ ∈ FT (R) and ÃR≤B̃. The fuzzy interval [Ã, B̃] is the set

[Ã, B̃] =
{

C̃ ∈ FT (R); ÃR≤C̃R≤B̃
}

.

Suppose that the set of all random samples of size n which are possible is X(n).

Definition 3. Any function Ã : X(n) → FT (R) is called a fuzzy statistic. Note that Ã(X1, . . . , Xn)
depends only on the random sample X1, . . . , Xn and not any unknown parameters. When the
observation x = (x1, . . . , xn) is given, then the value of the statistic Ã(x) is just one triangular
fuzzy number.

Let X be a measurable random variable on the probability space (Ω,F , Pr) and T̃ = T (a, b, c) ∈
FT (R) be such that 2b + a + c ≥ 0. According to (2), for any ω ∈ Ω we define (X ⊗ T̃ )(ω) =
X(ω)⊗ T̃ .
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Lemma 4. Let X be a random variable on the probability space (Ω,F ,Pr), k1, k2 ∈ R and
T̃ = T (a, b, c) ∈ FT (R), where 2b + a + c ≥ 0. Then

Pr(k1 ⊗ T̃R≤X ⊗ T̃R≤k2 ⊗ T̃ ) = 1− α if and only if Pr(k1 ≤ X ≤ k2) = 1− α.

Proof. See Proposition 5.1 of [11].
According to the Lemma 4, we can give the following definition.

Definition 4. Let Ã, B̃ ∈ FT (R) be the observed fuzzy statistic, where ÃR≤B̃. Then [Ã, B̃] is
called a 100(1− α)% fuzzy confidence interval for X ⊗ T̃ , where Pr(ÃR≤X ⊗ T̃R≤B̃) = 1− α.

Theorem 1. Suppose X1, X2, . . . , Xn that are independent, identically distributed random vari-
ables with N(µ, σ2) and U(au, bu, cu) ∈ FT (R) , L(al, bl, cl) ∈ FT (R) are the engineering fuzzy
specification limits, where au ≥ cl. Then the following interval is a 100(1−α)% fuzzy confidence
interval for C̃p 


∧
C̃p ⊗

√
χ2

n−1,α/2

n− 1
,
∧
C̃p ⊗

√
χ2

n−1,1−α/2

n− 1


 (7)

where
∧
C̃p= T

(
au−cl

6s , bu−bl
6s , cu−al

6s

)
is the point estimation of C̃p.

Proof.See Theorem 5.1 of [11].

Definition 5. Let [Ã, B̃] and [Ãn, B̃n]; n ∈ N be fuzzy intervals. Define

i) [Ã1, B̃1] = [Ã2, B̃2] if [R(Ã1), R(B̃1)] = [R(Ã2), R(B̃2)], (8)

ii) lim
n→∞[Ãn, B̃n] = [Ã, B̃] if lim

n→∞[R(Ãn), R(B̃n)] = [R(Ã), R(B̃)], (9)

where lim
n→∞[R(Ãn), R(B̃n)] = lim

n→∞R(Ãn), lim
n→∞R(B̃n)].

Our observation leads us to the following theorem which was presented as an open problem
in [11, 13]. Now we are ready to give the main result of this paper.

Theorem 2. Assuming m[0,1] is the Lebesgue measure defined on [0, 1]. Under the same as-
sumption as in Theorem 1, we have

m[0,1]






α; lim

n→∞



∧
C̃p ⊗

√
χ2

n−1,α/2

n− 1
,
∧
C̃p ⊗

√
χ2

n−1,1−α/2

n− 1


 =

[ ∧
C̃p ,

∧
C̃p

]




 = 1. (10)

Proof.Since any χ2
n random variable may be written as the sum of n i.i.d. χ2

1; so by the weak
law of large numbers (Theorem 6.4.3 of [1]), we have

lim
n→∞Pr

(∣∣∣∣
χ2

n

n
− 1

∣∣∣∣ < ε

)
= 1 for every ε > 0. (11)

Since g(x) =
√

x is a continues function for all x > 0, by Exercise 2.2.1 of [2], it follows that

lim
n→∞Pr

(∣∣∣∣∣

√
χ2

n

n
− 1

∣∣∣∣∣ < ε

)
= 1 for every ε > 0. (12)

Therefore, for all continuity points x of F (x),

lim
n→∞Fn(x) = F (x), (13)

where Fn(x) is distribution function of random variable
√

χ2
n
n and F (x) is a degenerate distrib-

ution at 1. Using Lemma 1.5.6 of [17], the set {α; lim
n→∞F−1

n (α) 6= F−1(α)} is at most countable
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and hence a set of Lebesgue measure zero, where G−1(α) = infx{x; G(x) ≥ α} is the α-quantile
of the distribution function G. Hence, Theorem 1.6.3 in [17] implies that

m[0,1]






α; lim

n→∞

√
χ2

n,α

n
6= 1






 = 0, for all 0 < α < 1. (14)

Obviously, we can conclude that m[0,1]

({
α; lim

n→∞

√
χ2

n−1,α/2

n−1 6= 1

})
= 0 and

m[0,1]

({
α; lim

n→∞

√
χ2

n−1,1−α/2

n−1 6= 1

})
= 0. Therefore the set



α; lim

n→∞




√
χ2

n−1,α/2

n− 1
,

√
χ2

n−1,1−α/2

n− 1


 6= [1 , 1]



 (15)

is of Lebesgue measure zero. Equivalently by Lemma 3, we may conclude

α; lim

n→∞


R

( ∧
C̃p

) √
χ2

n−1,α/2

n− 1
, R

( ∧
C̃p

)√
χ2

n−1,1−α/2

n− 1


 6=

[
R

( ∧
C̃p

)
, R

( ∧
C̃p

)]

 =

=



α; lim

n→∞


R




∧
C̃p ⊗

√
χ2

n−1,α/2

n− 1


 , R




∧
C̃p ⊗

√
χ2

n−1,1−α/2

n− 1





 6=

[
R

( ∧
C̃p

)
, R

( ∧
C̃p

)]

 =

=



α; lim

n→∞



∧
C̃p ⊗

√
χ2

n−1,α/2

n− 1
,
∧
C̃p ⊗

√
χ2

n−1,1−α/2

n− 1


 6=

[ ∧
C̃p ,

∧
C̃p

]

 , by (9)

is a set of Lebesgue measure zero, and its compliment is a set of Lebesgue measure one. Hence
(10) is proved.

Remark 1 The 100(1 − α)% fuzzy confidence interval for C̃p, given in Theorem 1, shows a
good reaction to the sample size n. In fact as n increases, the length of this interval decreases.
In particular as n tends to infinity, the limit of confidence intervals length goes to the point
estimate of C̃p.

Remark 2 When the process specification limits U(au, bu, cu) and L(al, bl, cl) are precise
numbers, then au = bu = cu and al = bl = cl. In other words when specification limits are
indicator functions, then as a result of Theorem 2, one can conclude that

m[0,1]






α; lim

n→∞


Ĉp

√
χ2

n−1,α/2

n− 1
, Ĉp

√
χ2

n−1,1−α/2

n− 1


 =

[
Ĉp , Ĉp

]





 = 1. (16)

See Remark 5.4 of [11].

5. CONCLUSIONS

If we define the specification limits by fuzzy quantities, it is more appropriate to define the
process capability indices as fuzzy numbers. Although we can obtain a point estimate for these
fuzzy process capability indices, but we would never expect this point estimate to be exactly
equal to the parameter value. Therefore, we usually compute a 100(1−α)% confidence interval
for our parameter. In this research, we proved an open problem related to the behavior of the
100(1−α)% confidence interval for C̃p stated in [11, 13]. Actually, we proved that as the sample
size tends to infinity, the limit of this confidence interval’s length goes to the point estimate of
the capability index C̃p.
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