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Inhibition of gelatinase B/MMP-9 does not
attenuate colitis in murine models of inflammatory
bowel disease
Magali de Bruyn1,2,*, Christine Breynaert3,*, Ingrid Arijs2,4, Gert De Hertogh5, Karel Geboes5, Greet Thijs1,

Gianluca Matteoli2, Jialiang Hu6, Jo Van Damme7, Bernd Arnold8, Marc Ferrante2,9, Séverine Vermeire2,9,

Gert Van Assche2,9 & Ghislain Opdenakker1

One third of patients with inflammatory bowel disease (IBD) inadequately respond to

anti-TNF treatment and preclinical data suggest that matrix metalloproteinase-9 (MMP-9) is

a novel therapeutic target. Here we show that IBD clinical and histopathological parameters

found in wild type mice challenged with three different models of colitis, acute and chronic

dextran sodium sulphate (DSS), and acute 2,4,6-trinitrobenzenesulfonic acid-induced colitis

are not attenuated in MMP-9 knockout mice. We find similar colonic gene expression profiles

in wild type and MMP-9 knockout mice in control and acute DSS conditions with the

exception of eleven genes involved in antimicrobial response during colitis. Parameters of

chronic colitis are similar in wild type and MMP-9 knockout mice. Pharmacological inhibition

of MMP-9 with bio-active peptides does not improve DSS colitis. We suggest that MMP-9

upregulation is a consequence rather than a cause of intestinal inflammation and we question

whether MMP-9 represents a disease target in IBD.
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I
nflammatory bowel diseases (IBD), including Crohn’s disease
(CD) and ulcerative colitis (UC), are chronic relapsing-
remitting diseases of the gastrointestinal tract1. Patients

present with (bloody) diarrhoea, abdominal cramping, fever,
fatigue and unintended weight loss. Both UC and CD are
common multifactorial diseases that cause enormous patient
discomfort and high healthcare costs for the society. The
incidence and prevalence of IBD are increasing worldwide,
including in developing countries2. Despite extensive research,
the etiopathogenesis of IBD is not yet fully understood. It is
thought that an abnormal immune response is elicited towards
the luminal microbiota in a genetically susceptible host1. The
introduction of anti-tumour necrosis factor biologicals more than
15 years ago had a major impact on the treatment of IBD
patients. Therapeutic goals evolved from symptomatic remission
to mucosal healing and lowered hospitalization and surgery rates.
However, up to one third of patients become therapy-resistant
and, consequently, new pharmacological targets are needed.
Within the matrix metalloproteinase (MMP) family, gelatinase B
or MMP-9 is suggested as a novel therapeutic target for
the treatment of IBD, because MMP-9 expression is associated
with disease development and is reduced by efficient treatment,
as recently reviewed3. Moreover, the covalent complex of
MMP-9 with neutrophil gelatinase B-associated lipocalin is a
serum marker of mucosal healing in UC4 and CD5. Animal
studies have been conducted to investigate the causal role of
MMP-9 in experimental colitis. Single MMP-9� /� and double
MMP-2� /� /MMP-9� /� mice were claimed to be resistant
to the development of acute colitis induced by dextran
sodium sulphate (DSS)6–8 and monoclonal antibodies against
MMP-9 were used to block acute DSS-induced colitis in mice9,10.
On these bases, clinical phase 1 studies in UC patients were
completed with an MMP-9 inhibitory antibody (GS-5745, Gilead
Sciences)11. However, recently, phase 2/3 clinical studies in UC
patients (TRIUMPH Study GS-US-326–1100) were terminated
after futility and efficacy analyses.

In the present study, we revert and complement published data
on MMP-9 gene deficiency in three animal models of colitis:
an acute and a chronic DSS-mediated model of colonic
inflammation mimicking various aspects of UC and an acute
2,4,6-trinitrobenzenesulfonic acid (TNBS)-mediated model that
more closely resembles CD. In addition, we use two peptide
inhibitors with proven efficacy towards MMP-9 in an acute
DSS-induced colitis model in three different set-ups: multiple
dose prophylactic and therapeutic schemes, and continuous
infusion via osmotic pumps. We find no differences in clinical or
histopathological parameters after genetic or pharmacological
inhibition of MMP-9. Therefore, our findings suggest that
MMP-9 upregulation is a consequence of the inflammatory
process and unlikely represents a therapeutic target in IBD.

Results
Genetic background and microbiota of MMP-9� /� and WT
mice. MMP-9� /� mice and their wild type (WT; C57BL/6J)
littermates were backcrossed for 13 generations and reared under
specific pathogen-free (SPF) conditions for more than 15 years
within the same insulator (Supplementary Fig. 1). Genetic
background characterization was performed on a panel of 1,449
single nucleotide polymorphisms (SNPs) in both MMP-9� /�

and WT mice. MMP-9� /� and WT mice were 99.86% and
99.97% of C57BL/6J recipient genome, respectively. Two SNPs
(rs3664408 and rs13476889) of 129S6/Sv background could be
discriminated in the MMP-9� /� mice at chromosome 2, related
to the region of genetic modification for Mmp9. Over a period
of 15 years, no differences in infections or seroconversion against

a number of classically tested animal pathogens were observed
between sentinel WT and MMP-9� /� mice from the
same unique breeding insulator. In addition, microbiome
profiling with 16S recombinant DNA (rDNA) sequencing
indicated that WT and MMP-9� /� mice had similar microbiota
richness and composition in control conditions and after
challenge with DSS12.

Similar loss of body weight in MMP-9� /� and WT mice. After
induction of acute colitis with DSS (Fig. 1a), the relative body
weight curves of WT and MMP-9� /� mice changed similarly
(Fig. 1b). At the time of killing (day 9), both DSS-treated WT and
MMP-9� /� mice had significant loss of body weight compared to
corresponding control mice (Fig. 1c). However, no body weight
loss differences were observed between DSS-treated WT and
MMP-9� /� mice. In addition, we studied chronic long-term
effects of MMP-9 gene knockout (KO) in a second model of colitis,
recently developed to study intestinal tissue remodelling and
fibrosis13 (Fig. 1a). After every cycle of DSS, both WT and
MMP-9� /� mice lost body weight and subsequently recovered to
normal body weights before the start of the next DSS cycle
(Fig. 1b). At day 52, 10 days after the third DSS cycle, no significant
difference was observed in body weight loss between DSS-treated
WT and MMP-9� /� mice. In addition, at the time of killing
(day 63), both control and DSS-treated WT and MMP-9� /� mice
recovered to normal body weights compared to day 0 (Fig. 1c).

Similar acute colonic inflammation in MMP-9� /� and WT mice.
After acute DSS administration, colon/body weight ratios
increased in both WT and MMP-9� /� mice compared to
corresponding control mice and were significantly higher in
DSS-treated MMP-9� /� mice compared to WT mice
(Fig. 2a). Colon length decreased in both DSS-treated WT and
MMP-9� /� mice compared to control mice, although no
significant difference was found between WT and MMP-9� /�

mice after DSS (Fig. 2b). Colon weight/length ratio (Fig. 2c),
macroscopic damage score (Fig. 2d) and histological inflamma-
tion, and activity scores (Fig. 2e–g) increased after acute
administration of DSS, but no differences were found between
DSS-treated WT and MMP-9� /� mice. Both male and female
mice were used in the acute DSS model. Gender differences were
found to be minimal (Supplementary Fig. 2) and were mainly
attributed to differences in colon weight. In general, the
colon/body weight ratio was significantly lower in male mice
compared to female mice, with exception of DSS-treated male
MMP-9� /� mice that had a similar colon/body weight com-
pared to female DSS-treated MMP-9� /� mice.

Similar chronic colonic inflammation in MMP-9� /� and WT
mice. After chronic DSS administration, colon/body weight
ratios increased in both WT and MMP-9� /� mice compared to
control conditions (Fig. 3a). However, no differences were
observed in colon/body weight ratios between DSS-treated WT
and MMP-9� /� mice (Fig. 3a). Colon length was significantly
shorter in MMP-9� /� control mice and longer in DSS-treated
MMP-9� /� mice compared to corresponding WT mice
(Fig. 3b). Significant increases in colon weight/length ratio
(Fig. 3c) and macroscopic damage score (Fig. 3d) were observed
after chronic DSS exposure in both WT and MMP-9� /� mice.
However, no differences were found between DSS-treated WT
and MMP-9� /� mice. Histological inflammation and activity
scores were higher in WT mice compared to MMP-9� /� mice
after DSS (Fig. 3e–g). This difference was mainly driven by the
fact that less epithelial defects and less goblet cell loss were
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observed in chronic DSS-treated MMP-9� /� mice compared to
WT mice (Supplementary Fig. 3d,e).

Similar remodelling and fibrosis in MMP-9� /� and WT mice.
The amount of collagen (Fig. 4a) and the surface area of blue after
Martius-Scarlet-Blue (MSB) staining (Fig. 4b,c) significantly increased
after chronic DSS administration in both WT and MMP-9� /� mice
compared to corresponding control mice. However, these parameters
of fibrosis were not significantly different between chronic
DSS-treated WT and MMP-9� /� mice. Furthermore, as parameters
of tissue remodelling, the thickness of the muscularis propria and the
mucosa was not significantly different between chronic DSS-treated
WT and MMP-9� /� mice (Fig. 4d–f).

Similar systemic inflammation in MMP-9� /� and WT mice.
Spleen weight, spleen/body weight ratio and spleen/colon
weight ratio were not significantly different between WT and

MMP-9� /� mice after acute DSS administration (Suppleme-
ntary Fig. 4a–c). The disease activity index (DAI) increased after
acute DSS administration in both WT and MMP-9� /� mice, but
no difference was observed between acute DSS-treated WT and
MMP-9� /� mice (Supplementary Fig. 4d). After chronic DSS
administration, spleen weight and spleen/body weight ratio
increased after DSS in both WT and MMP-9� /� mice, although
no difference was seen between DSS-treated WT and MMP-9� /�

mice (Supplementary Fig. 4e,f). Spleen/colon weight was not
significantly altered in MMP-9� /� mice after chronic DSS
administration compared to control MMP-9� /� mice (Suppleme-
ntary Fig. 4g). The DAI was lower in MMP-9� /� mice with
chronic DSS colitis compared to WT mice (Supplementary Fig. 4h).

Similar MMP-2 protein levels in WT and MMP-9� /� mice. As
to be expected, we did not observe MMP-9 protein levels in
colonic tissue from control or acute and chronic DSS-treated
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Figure 1 | Experimental set-up and body weight analysis after induction of acute and chronic colitis with DSS. (a) Acute colitis was induced in male and

female WT and MMP-9� /� mice by oral administration of 3% DSS for 7 days in drinking water followed by 2 days of normal drinking water before killing at

day 9 (*). Pooled data from three replicated acute DSS experiments are shown. The pooled group of acute DSS exposed mice comprised of WT mice (n¼ 20)

and MMP-9� /� mice (n¼ 20). Control mice received normal drinking water throughout the experiments (WT mice (n¼ 18) and MMP-9� /� mice

(n¼ 21)). To induce chronic colitis, three cycles of 1.75–2.00% DSS were administered, whereby one cycle of DSS comprised 1 week of DSS followed by

a recovery period of 2 weeks with normal drinking water. All mice were killed at day 63 (*). Pooled data from three separate chronic DSS experiments are

shown. The pooled group of chronic DSS exposed mice comprised WT mice (n¼9) and MMP-9� /� mice (n¼9). Control mice received normal drinking

water throughout the experiments (WT mice (n¼ 10), MMP-9� /� mice (n¼ 5)). (b) Relative body weight curves of WT and MMP-9� /� mice in acute

(left panel) and chronic (right panel) DSS colitis. (c) Left panel: absolute body weight loss of mice included in the acute model at day 9. Middle panel: absolute

body weight loss of mice included in the chronic model at day 52. Right panel: absolute body weight loss of mice included in the chronic model at day 63.

Median values with interquartile range are represented when applicable. Statistical analyses were performed with Mann–Whitney U tests (***Pr0.001).
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MMP-9� /� mice (Fig. 5a,b,e,f). In contrast, low proMMP-9
levels were detected in colonic tissue from WT control mice
(Fig. 5b) and both proMMP-9 trimer and monomer levels sig-
nificantly increased after acute DSS administration in WT mice

(Fig. 5a,b). Serendipitously, lower proMMP-2 levels were found in
colonic tissue from control MMP-9� /� mice compared to WT
mice (Fig. 5c). After acute DSS administration, proMMP-2 levels
increased in both WT and MMP-9� /� mice compared to cor-
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Figure 2 | Acute colonic inflammation induced by DSS in MMP-9� /� mice compared to WT mice. Data are shown of acute DSS exposed WT (n¼ 20)
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responding control mice (Fig. 5c). In line with these data, at the
messenger RNA (mRNA) level (vide infra), we observed that
Mmp2 expression was increased in colonic tissue from both
MMP-9� /� and WT mice after acute DSS administration.
However, no differences in proMMP-2 and activated MMP-2
levels were found between acute DSS-treated WT and MMP-9� /

� mice (Fig. 5c,d). After induction of chronic colitis, proMMP-9
trimer and monomer levels were significantly increased in colonic
tissue from DSS-treated WT mice compared to control WT mice
(Fig. 5e,f). Intriguingly, proMMP-2 levels were significantly
increased in WT mice, but not in MMP-9� /� mice after chronic
DSS administration (Fig. 5g). Activated MMP-2 levels increased
in both WT and MMP-9� /� mice after chronic DSS adminis-
tration (Fig. 5h).

Colonic gene expression profiles of WT and MMP-9� /� mice.
Since macroscopic and microscopic analyses did not reveal
significant differences between DSS-treated WT and MMP-9� /�

mice, we sought molecular explanations for the contrasts
between the reported phenotypes6–8 and the present study. We
here report RNA sequencing data of colonic mRNA isolated from
WT and MMP-9� /� mice in control and acute DSS conditions.
Specifically looking at the alignments of reads to the Mmp9 gene,
several reads mapped (nmax¼ 13) to exons 9–13 (representing the
haemopexin domain of MMP-9) in MMP-9� /� control samples,
but not to the genetically deleted exons 1–8, whereas in WT
control samples reads (no10) were mapped to the full Mmp9
gene (exons 1–13), as expected14. Moreover, in DSS-treated WT
mice the amount of reads mapped to exons 1–13 of the Mmp9
gene was significantly higher than in control WT mice, attesting
that Mmp9 expression is locally increased in the colon by DSS.
With these data, we illustrated also maintenance of the original
construct in the germ line for 15 years over 13 generations and
showed, in contrast with the leaky alternative line6–8,15, that our

mouse line is catalytically dead with a read-through transcript of
the Mmp9 haemopexin domain.

For differential expression analysis, the overlap between three
different methods (DESeq, EdgeR and CuffDiff2) regarding
significantly (false discovery rate (FDR) 10% and fold change
(FC)42) differentially expressed (DE) genes was calculated.
First, we investigated differences in gene expression between
both genotypes. Comparison of gene expression between WT
and MMP-9� /� control mice indicated that Mmp9, Rims4 and
Slpi were the only three significantly DE genes (Supplementary
Table 1). Rims4 expression was decreased in MMP-9� /� mice,
whereas the expression of Slpi was increased in MMP-9� /�

mice, compared to WT mice. After induction of acute colitis with
DSS, we found with EdgeR and CuffDiff2 analyses that the
expression of 11 genes (Clps, Ddx60, Fgb, Fgg, Ifi44, Ifit2, Isg15,
Itih3, Itih4, Oas3 and Usp18), which are involved in antimicrobial
response, was increased in MMP-9� /� compared to WT mice
(Supplementary Table 1). Second, we investigated the effect of
MMP-9 gene KO regardless of the fact whether mice received
DSS. Therefore, we looked at the overlapping DE genes between
control and DSS-induced WT versus MMP-9� /� mice. We
found no overlap in DE genes between these comparisons with
DESeq or EdgeR, whereas with CuffDiff2 we found 1 overlapping
DE gene (pre B-lymphocyte 3/Vpreb3) of which the expression
was decreased in MMP-9� /� mice compared to WT mice
regardless of the induction of inflammation. Third, we studied
the effect of DSS in both genotypes separately. We found that
189 annotated DE genes were induced by DSS in WT mice and
overlapped between the three differential expression analysis
methods (Fig. 6). In the MMP-9� /� mice, we annotated
344 DSS-induced DE genes that overlapped between the three
differential expression analysis methods (Fig. 6). Finally, we
found 95 annotated DE genes that were common to both WT and
MMP-9� /� mice in response to an inflammatory stimulus and
these genes were involved mainly in haematological system
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development and function, tissue morphology and inflammatory
response networks (Fig. 6). In contrast, 94 and 249 annotated
DE genes were specific to WT and MMP-9� /� mice,
respectively, in their response to inflammation (Fig. 6). Pathway

analysis indicated that the 94 genes that were uniquely DE in
WT mice after DSS were involved in cellular movement, immune
cell trafficking and infectious diseases networks (Fig. 6).
The 249 genes that were uniquely DE in MMP-9� /� mice after
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Figure 5 | Gelatin zymography analysis of colonic gelatinase A (MMP-2) and gelatinase B (MMP-9) levels in DSS colitis. Data are shown from acute

DSS exposed WT (n¼ 10) and MMP-9� /� mice (n¼ 11) as well as control WT (n¼ 9) and MMP-9� /� mice (n¼ 11). For the chronic model, read-outs

from DSS exposed WT (n¼9) and MMP-9� /� mice (n¼ 10), and control WT (n¼ 9) and MMP-9� /� mice (n¼4) are shown. Pooled data from

three replicated acute DSS experiments are shown. A template of a zymography gel (top panel) including samples from control and DSS-treated WT and
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DSS were involved in inflammatory response, haematological
system development and function and tissue morphology
networks (Fig. 6).

In addition, we specified differential expression of other Mmp
or Timp genes. We found that there was no significantly different

expression of Mmp or Timp genes between WT and MMP-9� /�

mice under control or DSS conditions (with exception of Mmp9;
Table 1). Interestingly, when looking at the response to DSS in
WT and MMP-9� /� separately, we found that in WT mice
the expression of Mmp3, Mmp8, Mmp9, Mmp10, Mmp12,

MMP-9–/– control versus DSS

249

95

94

DSS effect

Inflammatory response, haematological
system development and function and
tissue morphology (26 focus molecules):
ALAS2, AQP4, BDKRB1, CD300LF, CMA1,
HP, IL1B, ITGAM, KRT17, LGMN, Madcam1,
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HGF, IL1RL1, IL36G, ITGB2, MARCO and Mcpt1

Haematological system development and function, tissue
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Figure 6 | Venn diagram of unique and overlapping DE genes in WT and MMP-9� /� mice after induction of acute colitis with DSS. Unique

differentially expressed (DE) genes between control and DSS-induced MMP-9� /� and WT mice are shown in red and blue, respectively. DE genes that

overlapped in both comparisons and thus represent the effect of DSS, are shown in green. For both unique and overlapping DE genes, a selection of focus

molecules is given based on the top involved pathways (identified with Ingenuity Pathway Analysis).

Table 1 | Overview of DE Mmp and Timp genes in the colon of MMP-9� /� and WT mice in control and DSS conditions.

Gene symbol Gene name DESeq EdgeR CuffDiff2

Log2 FC Adj P value Log2 FC Adj P value Log2 FC Adj P value

MMP-9� /� control (n¼ 8) versus WT control (n¼ 8)
Mmp9* Matrix metalloproteinase 9 3.9 7.89 e-34 3.8 3.20 e-40 3.9 0.019
Timp1 Tissue inhibitor of metalloproteinase 1 0.1 1 0.1 1 0.1 1

MMP-9� /� DSS (n¼ 8) versus WT DSS (n¼ 8)
Mmp9* Matrix metalloproteinase 9 � 1.5 1 NA NA � 1.3 0.999
Timp1 Tissue inhibitor of metalloproteinase 1 0.8 1 0.78 1 0.8 0.999

WT DSS (n¼ 8) versus WT control (n¼ 8)
Mmp2 Matrix metalloproteinase 2 1.3 0.052 1.3 1.44 e-04 1.3 8.31 e-04
Mmp3 Matrix metalloproteinase 3 6.8 2.76 e-04 6.8 3.04 e-24 6.8 8.31 e-04
Mmp7 Matrix metalloproteinase 7 2.5 0.014 2.4 6.70 e-05 2.4 0.077
Mmp8w Matrix metalloproteinase 8 NA 1.90 e-04 10.8 3.58 e-23 NA 8.31 e-04
Mmp9 Matrix metalloproteinase 9 5.4 0.004 5.4 2.83 e-22 5.4 8.31 e-04
Mmp10w Matrix metalloproteinase 10 5.4 0.004 5.4 2.83 e-22 6.2 8.31 e-04
Mmp12 Matrix metalloproteinase 12 6.2 4.05 e-05 6.2 1.89 e-24 2.0 8.31 e-04
Mmp13 Matrix metalloproteinase 13 5.3 0.002 5.3 5.20 e-18 5.3 8.31 e-04
Mmp19 Matrix metalloproteinase 19 2.3 0.019 2.3 4.07 e-06 2.3 0.005
Timp1 Tissue inhibitor of metalloproteinase 1 5.5 1.57 e-04 5.6 1.41 e-22 5.6 8.31 e-04

MMP-9� /� DSS (n¼ 8) versus MMP-9� /� control (n¼ 8)
Mmp2 Matrix metalloproteinase 2 4.2 0.368 2.1 1.45 e-04 2.1 0.018
Mmp3 Matrix metalloproteinase 3 7.9 0.118 NA NA 7.9 0.003
Mmp7 Matrix metalloproteinase 7 3.5 0.031 3.5 5.44 e-06 3.5 0.325
Mmp8w Matrix metalloproteinase 8 11.9 9.37 e-06 10.6 1.17 e-23 11.9 0.009
Mmp9* Matrix metalloproteinase 9 1.05 1 NA NA 0.2 0.871
Mmp10w Matrix metalloproteinase 10 8.0 0.005 8.0 1.95 e-20 8.0 7.61 e-04
Mmp12 Matrix metalloproteinase 12 2.5 0.274 2.5 1.24 e-05 3.1 7.61 e-04
Mmp13 Matrix metalloproteinase 13 6.8 0.055 6.8 1.31 e-16 6.8 7.61 e-04
Mmp19 Matrix metalloproteinase 19 2.7 0.258 2.8 2.72 e-06 2.8 0.003
Timp1 Tissue inhibitor of metalloproteinase 1 6.2 0.079 6.3 1.51 e-15 6.3 7.61 e-04

adj, adjusted; DSS, dextran sodium sulphate; FC, fold change; NA, undetectable value.
*In MMP-9� /� mice, reads were mapped only to exons 9–13 (non-functional read-through transcript containing the haemopexin domain), whereas no reads were mapped to exons 1–8 (the functional
part of the Mmp9 gene). This explains the paradoxical difference between MMP-9� /� control and WT control mice.
Gene symbols and names in bold represent significance regarding differential expression, bold gene symbols with a dagger (w) indicate overlap between significantly DE genes.
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Figure 7 | Parameters of inflammation after induction of acute colitis with TNBS in WT and MMP-9� /� mice. Data are shown from TNBS exposed WT

(n¼ 10) and MMP-9� /� (n¼ 10) mice as well as control WT (n¼8) and MMP-9� /� (n¼8) mice. The experimental set-up for control and TNBS-

treated mice included presensitization with or without TNBS at day 0, followed by rectal injection of either 50% EtOH or 2.5% TNBS in 50% EtOH at day 7

and killing of all mice at day 10 (*) (a). As clinical parameters, relative weight curves (b), absolute weight loss at time of killing (c) and DAI (d) are shown.

The macroscopic damage score (e), colon/body weight ratio (f), colon length (g) and colon weight/length (w/l) ratio (h) are shown as parameters of

macroscopic colonic inflammation. Finally, histological inflammation (i) and histological active disease scores (j) are shown, in addition with H&E

illustrations (k) of pieces of colon from EtOH- and TNBS-induced WT and MMP-9� /� mice. Median values with interquartile range are represented when

applicable. Statistical analyses were performed with Mann–Whitney U tests (*Po0.05, **Pr0.01 and ***Pr0.001). Scale bars of 200mm are shown on

the microscopic images.
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Mmp13, Mmp19 and Timp1 was increased after DSS, whereas in
MMP-9� /� mice only Mmp8 and Mmp10 were significantly
upregulated after DSS (Table 1).

Similar TNBS-induced colitis in MMP-9� /� and WT mice. To
confirm the lack of difference in phenotype between WT and
MMP-9� /� mice after induction of colitis with DSS, which more
closely resembles UC, we performed a TNBS colitis model
(Fig. 7a) which has a different immunological mechanism and is
more related to CD in humans3. We found that both
WT and MMP-9� /� mice lost significant amounts of body
weight after rectal administration of TNBS compared to
corresponding control mice that received 50% EtOH (Fig. 7b).
However, there was no significant difference in body weight loss
between TNBS-treated WT and MMP-9� /� mice at time of
killing (Fig. 7c). In addition, DAI, macroscopic damage score and
colonic measurements also increased after TNBS in both WT and
MMP-9� /� mice compared to corresponding controls, but we
observed no significant differences between TNBS-treated WT
and MMP-9� /� mice (Fig. 7d–h). Histological evaluation
indicated that the histological inflammation and activity scores

were similar between control WT and MMP-9� /� mice that
were rectally injected with 50% EtOH (Fig. 7i–k). A significant
increase in histological inflammation and activity scores was
observed in TNBS-induced mice compared to 50% EtOH-
induced mice (Fig. 7i–k). However, similar histological
inflammation and activity scores were observed in
TNBS-induced WT and MMP-9� /� mice (Fig. 7i–k).

Pharmacological inhibition of MMP-9 does not improve colitis.
First, intraperitoneal (i.p.) injections of peptide inhibitors
A and B (refs 16,17) were given daily to DSS-treated mice starting
from day 6 (after development of colitis, therapeutic scheme;
Fig. 8a). Control mice were injected daily with 0.9% pyrogen-free
NaCl (saline). DSS-treated mice injected with peptide inhibitor B
had significantly more body weight loss at time of killing com-
pared to DSS-treated mice injected with saline (Fig. 8b). However,
no difference in body weight loss was observed in DSS-induced
mice treated with peptide inhibitor A compared to peptide
inhibitor B or saline (Fig. 8b). Moreover, the DAI of DSS-induced
mice that were injected with peptide inhibitor B was higher
compared to DSS-induced mice injected with either peptide
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inhibitor A or saline, although no difference was observed
between peptide inhibitor A injected DSS-induced mice and
saline injected DSS-induced mice (Fig. 8c). Second, DSS-treated
mice were injected daily with peptide inhibitor A or B starting
from day 1 (before development of colitis, prophylactic scheme;
Fig. 8d). DSS-treated mice lost significantly more body weight,
compared to control mice, although no differences were observed
between DSS-treated mice receiving peptide inhibitor A, peptide
inhibitor B or saline (Fig. 8e). Moreover, the DAI was not
significantly different between saline, peptide inhibitor A
or peptide inhibitor B injected DSS-induced mice (Fig. 8f).
Finally, since the half-life of these peptide inhibitors in the
circulation is quite low (o1 h)16, we implanted osmotic
pumps subcutaneously on the back of the mice ensuring a
continuous release of the inhibitors. All mice lost significant
amounts of body weight after DSS (Fig. 8g). However,
administration of peptide inhibitor A resulted in a mild
protection with lower loss of body weight in DSS-treated mice
compared to peptide inhibitor B and saline (Fig. 8h). This was
also reflected by the DAI, whereby DSS-treated mice had a
significantly lower DAI after delivery of peptide inhibitor A
compared to peptide inhibitor B or saline (Fig. 8i). By
histopathological analysis, we did not observe a significant
effect of peptide inhibitor A nor B on the severity of intestinal
inflammation after all three administration schemes (Fig. 9).

The macroscopic damage score of DSS-treated mice
was not altered by peptide inhibitors A or B in the therapeutic
(Supplementary Fig. 5a,b) or prophylactic schemes (Supple-
mentary Fig. 6a,b). However, when peptide inhibitors were
continuously administered via osmotic pumps, a lower
macroscopic damage score was observed in DSS-induced
mice treated with peptide inhibitor A compared to DSS-induced
mice that received saline (Supplementary Fig. 7a,b).
Colonic measurements were not significantly different in
DSS-treated mice that received peptide inhibitors compared to
saline injection in a therapeutic (Supplementary Fig. 5)
or prophylactic (Supplementary Fig. 6) scheme. However,
after continuous release of the peptide inhibitors through
osmotic pump delivery, the colon length of DSS-treated
mice that received peptide inhibitor A was significantly
longer compared to the colon length of DSS-treated mice
that were given peptide inhibitor B or saline (Supplementary
Fig. 7c). However, other colonic measurements (colon weight,
colon/body weight ratio and colon weight/length ratio) were
not significantly different between DSS-induced mice that
received peptide inhibitor A, peptide inhibitor B or saline
through osmotic pump delivery (Supplementary Fig. 7d–f).
To ensure that therapeutic levels of peptide inhibitors A and B
were attained during all three administration schemes, plasma
levels were measured with competitive ELISAs as described
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Figure 9 | Histological inflammation and activity scores after peptide inhibitor administration. Histological scores are shown after therapeutic
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Median values are represented and statistical analyses were performed with Mann–Whitney U tests. Scale bars of 200mm are shown on the
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previously16. As shown in supplementary Fig. 8, inhibitory
plasma levels were indeed reached in vivo for all three
administration schemes.

MMP inhibition alters colonic MMP mRNA expression. In
view of the known effects of peptide inhibitors A and B on MMP-
3, MMP-8, MMP-9 and TACE (refs 16,17), on the basis that
MMP-3 is an activator of MMP-9 (ref. 18) and because MMP-8
and MMP-9 are major neutrophil MMPs (refs 3–5), we evaluated
colonic expression levels of specific mRNAs in control and
DSS-induced and peptide-treated mice. As expected, mice with
acute DSS-induced colitis had significantly increased expression
of Mmp3, Mmp8 and Mmp9 compared to control mice
(Fig. 10a–c). In the therapeutic scheme, the expression of
Mmp3, Mmp8 and Mmp9 appeared to be higher in DSS-treated
mice injected with peptide inhibitor B compared to peptide
inhibitor A or saline (Fig. 10a). In the prophylactic scheme, the
same trend was observed and, in addition, DSS-treated mice
injected with peptide inhibitor B had a significantly increased
expression of Mmp9 compared to DSS-treated mice injected
with saline (Fig. 10b). When peptide inhibitors were delivered
continuously via implanted osmotic pumps, Mmp8 and Mmp3
expression was significantly higher in DSS-induced mice that
received peptide inhibitor B compared to saline (Fig. 10c).
Moreover, Mmp9 expression was significantly increased
in DSS-induced mice that received peptide inhibitor B compared
with peptide inhibitor A or saline (Fig. 10c). Significant
differences in Tace expression were seen after all three adminis-
tration schemes, although relative expression values were low in
comparison with those of the analysed MMPs. These data attest
that with the three treatment schemes, in addition to reaching
inhibitory plasma levels (Supplementary Fig. 8), pharmacological
effects were also locally demonstrated in colonic mucosa.

Discussion
Various studies point towards a disease causing role of MMP-9
in animal models of IBD6–10,19. We here critically re-evaluated
these studies and reduced possible confounding parameters of
gene KO studies. We optimized control settings by using
sufficiently large animal cohorts, by performing sufficient
backcrosses and by using the same environmental conditions
for breeding WT and MMP-9� /� mice for more than 15 years.

In addition, SNP analysis and RNA sequencing were performed
to detect differences at the DNA and mRNA levels, and
gelatin zymography analysis was used to show absence of
MMP-9-mediated gelatinolysis after faithfully introducing the
KO construct in vivo. Finally, 16S rDNA sequencing was
performed to study differences in microbiota richness and
composition between WT and MMP-9� /� mice in control
and DSS conditions12. Briefly, we observed that changes in gut
microbiota were mainly driven by DSS and were not significantly
altered by MMP-9 gene KO.

First, potential differences between WT and MMP-9� /� mice
after induction of acute colitis were studied. Therefore, we used
two models of chemically induced colitis, namely DSS and TNBS,
that are driven by different immunological mechanisms3. The
DSS model more closely resembles UC, whereas TNBS is more
representative for CD in humans. Surprisingly, our genetically
well-defined MMP-9� /� mice did not have the reported6–8

attenuation of colitis phenotypes after DSS or TNBS admini-
stration compared to WT mice. The colon/body weight, however,
was found to be significantly higher in MMP-9� /� mice after
DSS administration, but this was related to a gender-driven effect
with higher colon/body weight in male mice. Second, since IBD is
characterized by a chronic disease course with tissue remodelling
and fibrosis as important complications, we additionally studied
the effect of MMP-9 gene KO on chronic DSS-induced colitis and
fibrosis. However, the majority of the inflammatory, tissue
remodelling and fibrosis parameters were not significantly
different between MMP-9� /� and WT mice after chronic DSS
administration. In conclusion, we did not observe a causal role of
MMP-9 in three different models of colitis: two acute
inflammatory models and one chronic fibrostenosing model.

These discrepancies in study outcomes can be explained at
several levels. First, it needs to be remarked that our study cohorts
were larger than those presented in other studies6–8. Studies with
small cohorts have the intrinsic risk of larger bias. Second, our
WT and MMP-9� /� mice were kept for more than 15 years in
the same SPF insulator with exactly the same environmental
conditions and this aspect was not considered in previous
studies6–8. Third, because of a subfertility phenotype it took more
than 10 years to obtain black MMP-9� /� mice in our backcross
experiments into C57BL/6J background (Supplementary Fig. 1).
Although the importance of sufficient backcrosses is widely
recognized20, it remains arbitrary. However, mice with different
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fur colour not only have different genetic backgrounds, they also
may cause observation bias. In other IBD/MMP-9 studies6–8,
genetic background and for example, fur colour are not detailed.
In the present study, we used black MMP-9� /� mice from
the 13th backcross into C57BL/6J (Supplementary Fig. 1) and
showed absence of a functional Mmp9 gene in our in-house bred
MMP-9� /� mice at the DNA, mRNA and protein levels.
Genetic background characterization with 1,449 SNPs indicated
that our KO mice are 99.86% on C57BL/6J background and are
matched to the genetic background of their WT littermates, with
exception of 2 SNPs on the 129S6/Sv background which are
related to the region of genetic modification for Mmp9 (ref. 14).
By RNA sequencing of colonic tissues, we documented that in the
processed mRNA, exons 1–8 were indeed absent. In addition, we
observed an artificial read-through transcript, that is, the
haemopexin domain (exons 9–13). This exemplifies that more
attention than previously thought needs to be paid to control
experiments in all KO studies. At the protein level, we confirmed
the absence of a functional MMP-9 enzyme in our MMP-9� /�

mice with gelatin zymographies14 (Fig. 5). In contrast, in the
previously published IBD/MMP-9 studies6–8, a mouse strain with
demonstrated functional leakiness at the MMP-9 protein level15

was used. Whereas some evidence for the leakiness of MMP-9
expression in the previously used IBD/MMP-9� /� mice is
present in two published manuscripts6,8, no zymography analysis
was provided in a third study7.

Since we did not observe significant macroscopic and
histopathological differences in the absence of MMP-9 in
a setting of acute intestinal inflammation that was similar to
the ones reported previously6–8, we performed in-depth analysis
with whole-genome RNA sequencing. We found that only 3
genes (Mmp9, Rims4 and Slpi) were DE in the colon between
MMP-9� /� and WT control mice. Rims4 (regulating synaptic
membrane exocytosis 4) expression was found to be sixfold lower
in MMP-9� /� mice. Rims4 protein is involved in ion channel
binding21. Secretory leucocyte peptidase inhibitor (Slpi) was
found to be 2.5-fold higher in MMP-9� /� mice. It inhibits
endopeptidases and microbes and was previously studied in
experimental colitis and IBD22–25. Moreover, a more direct link
with MMP-9 was found whereby SLPI was shown to promote the
metastasis of gastric cancer cells by increasing MMP-9
expression26. Interestingly, both Rims4 and Slpi are located on
mouse chromosome 2 not far (o1 Mb) from Mmp9. After
stimulation with DSS, 11 genes (Clps, Ddx60, Fgb, Fgg, Ifi44, Ifit2,
Isg15, Itih3, Itih4, Oas3 and Usp18) involved in antimicrobial
response were more highly expressed in MMP-9� /� versus WT
mice. Remarkably, the expression of a number of genes in the
interferon response was increased and interferon-b has been
described as a substrate of MMP-9 (ref. 27). This finding is
reminiscent of increased expression of other MMP-9 substrates in
the pancreas of MMP-9� /� mice28. Moreover, ISG15 ubiquitin-
like modifier (Isg15)29, fibrinogen beta (Fgb) and fibrinogen
gamma (Fgg) chains30 were also identified as substrates of
MMP-9. The expression of Vpreb3/pre B-lymphocyte protein 3
was found to be decreased in MMP-9� /� mice compared to
WT mice in both control and DSS conditions. Vpreb3 is
expressed during B-cell differentiation in subsets of mature B
lymphocytes and is linked to formation of B-cell lymphomas31.
Many genes (n¼ 249) were found to be uniquely expressed
by MMP-9� /� mice after DSS administration. Interestingly,
25% of these genes were involved in differential regulation
of cytokine production in intestinal epithelial cells by IL-17A
and IL-17F. This attests to the role of MMP-9 as a tuner of
immune functions32. In addition, protein tyrosine phosphatase
non-receptor 22 (PTPN22) was one of the top molecules uniquely
expressed in MMP-9� /� mice after DSS administration.

PTPN22 is known to dephosphorylate NLRP3 upon inflamma-
some induction, allowing efficient NLRP3 activation and
subsequent IL-1b release. In murine models, PTPN22 deficiency
results in pronounced colitis, increased NLRP3 phosphorylation,
but reduced levels of mature IL-1b. Conversely, IBD patients
who carry an autoimmunity-associated PTPN22 variant
have increased IL-1b levels. PTPN22 is therefore recognized as
an important regulator of NLRP3 that prevents aberrant infla-
masome activation33. The expression of cytotoxic T-lymphocyte-
associated protein 4 was upregulated in both WT and
MMP-9� /� mice after DSS. CTLA-4 is a coinhibitory protein
required for regulation of T-cell activation and CTLA-4
deficiency in mice is associated with fatal lymphoproliferation,
intestinal inflammation and autoimmunity. Moreover, neutra-
lization of CTLA-4 is associated with intestinal inflammation and
autoimmunity in human cancer. Recently, genetic variants in
cytotoxic T-lymphocyte-associated protein 4 were also associated
with early-onset CD (ref. 34). In a subset of MMP and TIMP
genes, we found that upregulation of Mmp8 and Mmp10 by DSS
was shared between both genotypes, whereas Mmp3, Mmp9,
Mmp12, Mmp13, Mmp19 and Timp1 were uniquely upregulated
in WT mice. The general picture emerging from this extensive
gene expression analysis is also in line with our microarray data
of IBD patients under anti-tumour necrosis factor treatment35

and points towards the idea that the disease process induces
altered expression of several MMPs and TIMPs3, rather than
being the result of MMP-9 specifically.

In view of promising effects of monoclonal antibodies against
MMP-9 on DSS-induced colitis9,10 and small peptide inhibitors
of MMP-9 on acute endotoxin shock in mice16, we expected
that treatment with MMP-9 inhibiting peptides would lead to
beneficial effects. We therefore treated mice with bolus injections
or with a continuous infusion of peptide inhibitors, but observed
no overall significantly beneficial effects. In fact, in a therapeutic
administration scheme, a trend for an opposite effect was seen for
peptide inhibitor B. In contrast, DSS-treated mice that
were implanted with osmotic pumps and continuously received
peptide inhibitor A did show improved disease activity
scores. However, in all three treatment schemes, histological
inflammation and disease activity scores were not significantly
altered by peptide inhibitor A or B administration compared to
saline. Furthermore, mRNA expression of Mmp3, Mmp8 and
Mmp9 was highly increased in DSS-treated mice that received
peptide inhibitor B compared to peptide inhibitor A or saline,
with highest upregulation after the therapeutic injection scheme
and delivery via implanted osmotic pumps. In general, in line
with our data obtained in MMP-9� /� mice, pharmacological
inhibition of MMP-9 did not improve colitis phenotypes.
Why inhibition of MMP-9 with monoclonal antibodies
improves DSS-induced colitis9,10, whereas inhibition with small
peptides does not, is puzzling. To rule out that insufficient
levels were attained, we measured the levels of peptide inhibitors
A and B in plasma for all three administration schemes as
described previously16 and confirmed that adequate plasma levels
were indeed present at time of killing (Supplementary Fig. 8).
Furthermore, local mucosal alterations of MMP and TACE
mRNAs were a further illustration of the biological effects of the
used peptide inhibitors.

In conclusion our data (i) illustrate that mouse KO experi-
ments need to be better controlled than published in most
manuscripts up-to-now and that careful analyses of genetic
background, of eventual leakiness at the mRNA and protein levels
and of different environmental factors between used WT and KO
mice need to be detailed, (ii) place important question marks
behind the previously reported causal role of MMP-9 in murine
colitis and (iii) call for scrutiny in preclinical and clinical tests of
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prophylactic and therapeutic MMP inhibition for IBD. However,
these data (iv) reinforce in murine animal studies that MMP-9
constitutes an excellent inflammatory marker for IBD.

Methods
Mice. Initially, we developed two MMP-9� /� mouse lines at the Rega Institute
for Medical Research (Leuven, Belgium), one of which turned out to still produce
MMP-9 and the other one not. The former leaky line was immunologically tolerant
for mouse MMP-9, whereas in the latter non-leaky mouse line we developed
neutralizing antibodies against mouse MMP-9 (refs 14,36). However, our
catalytically dead mouse line had a subfertility phenotype with low pup numbers
and this considerably slowed down our backcrossing scheme37. After about
10 years of backcrossing into the C57BL/6J background, we were at generation 10,
but these mice had still agouti fur colour38. Finally, by several additional years of
backcrossing, we obtained black MMP-9� /� mice in the 13th generation
(Supplementary Fig. 1). All mice used in this study were confirmed for their
MMP-9� /� or WT genotype by PCR. In addition to KO status, we carefully
characterized the genetic background of the mice. Genomic DNA was extracted
from tail tips of the mice and background strain characterization was performed on
a panel of 1,449 SNP markers (Taconic, Rensselaer, NY, USA), as detailed
elsewhere39. MMP-9� /� mice and their WT littermates were reared under SPF
conditions at the Rega Institute for Medical Research (Leuven, Belgium) for more
than 15 years within the same insulator with access to the same formula of
nutrition and thereby with unprecedented environmental similarities. On a regular
basis sentinel WT and MMP-9� /� mice of the same breeding insulator were
screened for infections and seroconversion against a number of classical animal
pathogens. Moreover, 16S rDNA sequencing was performed to study differences in
microbiota richness and composition between WT and MMP-9� /� mice in
control and DSS conditions12. The study was approved by the local ethics
committee for animal experimentation of the University of Leuven (P134–2010,
P178–2011 and P156/2016).

Dextran sodium sulphate-induced colitis. Acute and chronic dextran sodium
sulphate (DSS) colitis were induced as described previously13,39. Acute colitis was
induced in 8–10 weeks old male and female mice by oral administration of 2–3%
DSS (35–50 kDa; MP Biomedicals, Illkirch, France) in the drinking water during
7 days followed by 2–3 days on normal drinking water. All mice were killed at
day 9 (Fig. 1a). Chronic colitis was induced by 3 cycles of DSS in 8–10 weeks old
female mice. One cycle of DSS was defined as 1 week of DSS administration
followed by a recovery period of 2 weeks on normal drinking water. All mice were
killed after 9 weeks (Fig. 1a). Control mice (WT and MMP-9� /� ) received normal
drinking water throughout the duration of the experiment. The body weight of the
mice was monitored daily or every other day in case of the acute model, whereas in
the chronic model, body weight was followed every 3–4 days. Of importance, WT
and MMP-9� /� mice were co-housed (maximally 5 mice per cage) during the
experiments ensuring identical environmental conditions as well as controlling for
cage-related effects (for example, coprophagia and intake of food and (DSS-
supplemented) drinking water). Both the acute and chronic DSS experiments were
repeated three times whereby results could be replicated each time and in total 79
mice were used in the acute models and 35 mice in the chronic models. The
number of mice needed was estimated based on previous experience13 and
included at least 5 mice per group to ensure adequate power of detection. In total, 1
MMP-9� /� and 3 WT mice died during the 3 acute DSS experiments, whereas in
the 3 chronic models, 1 MMP-9� /� and 1 WT mice died after the third cycle of
DSS due to severe weight loss. These mice were excluded from further analyses. In
addition, 1 MMP-9� /� mouse was excluded afterwards for the total analysis of
the experiment because of severe dysplasia (neoplasia) at the histological level.
No randomization was applied before start of the experiments.

Trinitrobenzenesulfonic acid-induced colitis. Acute 2,4,6-trinitrobenzene-
sulfonic acid (TNBS) colitis was induced in 7–8 weeks old male and female WT
and MMP-9� /� mice as described earlier (Fig. 7a)40,41. Briefly, 7 days before
rectal administration, WT and MMP-9� /� mice were cutaneously presensitized
with 1% (w/v) TNBS in a 4:1 volume ratio of aceton and olive oil. Therefore,
a small patch of abdominal skin was shaved with an electric razor where after
150ml of presensitization solution was applied. Control mice were treated with
presensitization solution without TNBS. At day 7, mice were anaesthetized by i.p.
injection of Ketamine/Xylazin solution. A plastic feeding tube (FTP-20–38,
Phymep, France) was fitted to a 1 ml syringe and filled with 50% ethanol (EtOH) or
1:1 volume of 5% TNBS in absolute EtOH (2.5% TNBS). The tube was then gently
inserted into the colon 3 cm proximal to the anus and 100 ml of either solution was
slowly administered into the lumen. Thereafter, the mice were kept in a vertical
position for 60 s and returned to the cage. The body weight of the mice was
monitored every other day after presensitization and every day after rectal EtOH or
TNBS administration (day 7) until time of killing. In total, 38 mice were included
of which 1 MMP-9� /� and 1 WT mice were excluded due to death after
either sedation or injection of TNBS, respectively. WT and MMP-9� /� mice were
co-housed during the experiment.

Evaluation of colonic inflammation and histology. Animals were euthanized
with sodium pentobarbital (Nembutal, Ovation Pharmaceuticals Inc. Deerfield,
USA). The DAI was calculated based on three parameters: loss of body weight
(one point for each 5% loss of body weight), consistency of stools (normal¼ 0,
soft¼ 2, liquid¼ 4) and presence of gross blood in stools (0¼ none, 1¼
present)13,39. The colon was isolated, weighted and its length measured from the
ileocecal junction to the anus. Since our non-leaky MMP-9� /� mice are smaller
than their WT littermates38, we here report measurements of colon weight as a
ratio over body weight. The macroscopic damage score was calculated based on
extent of inflammation along the colon (in cm, multiplied by 2 if severe), colonic
mesenterial adhesion (0¼ none, 1¼mild, 2¼ severe) and colonic hyperaemia
(0¼ none and 1¼ present)13,39. A piece of colon was fixed in 4% formalin for
histopathological evaluation and other parts were snap-frozen for RNA sequencing,
quantitative real-time polymerase chain reaction, gelatin zymography and
hydroxyproline assay. Histopathological evaluation was performed on paraffin
embedded, 5 mm-thick longitudinal and transverse sections stained with
haematoxylin and eosin (H&E). The histological inflammation score was calculated
based on the sum of architectural changes, neutrophil infiltration, epithelial defects,
mononuclear cell infiltration and goblet cell loss; whereas the histological
activity score was calculated based on neutrophil infiltration and epithelial
defects13,39. Three sections per animal were evaluated and slides were scored by
experienced pathologists (K.G. and G.D.H.) who were blinded to the experimental
conditions.

Evaluation of tissue remodelling and fibrosis. Paraffin embedded, 5 mm-thick
transverse sections were stained using a MSB trichrome staining highlighting
connective tissue changes13,39. Images were acquired with the use of a Zeiss
Axiovert 200 microscope, a Zeiss Axiocam MRc5 camera and the Zeiss Axiovision
4.7.1.0 software imaging system. As parameters of tissue remodelling, the thickness
of the mucosa and muscularis propria were calculated as mean values of two
different points per mouse on uniform horizontal cross sections of colon crypts
using ImageJ (ref. 42). To evaluate fibrosis, a hydroxyproline assay43 was
performed to evaluate collagen content in the colon. In addition, the surface of blue
(mm2) in mucosa and submucosa was quantified on MSB stained slides using
ImageJ 1.45 (NIH Windows version)42.

Gelatin zymography. Gelatin zymography was performed in accordance with
recent recommendations and standardizations4,35,39,44. Snap-frozen colonic tissues
from WT and MMP-9� /� mice after both acute and chronic colitis models were
prepurified using gelatin Sepharose beads (GE Healthcare, Buckinghamshire,
United Kingdom) and mini spin columns (Bio-Rad Laboratories, Hercules,
CA, USA)45. The bound gelatinases were eluted from the column with 20 ml
Tris/glycine/sodium dodecyl sulfate nonreducing loading buffer (Invitrogen,
Carlsbad, CA, USA). The prepurified samples were then spiked with a known
amount of a recombinant deletion mutant of human MMP-9 that does not
interfere with any mouse gelatinolytic enzyme. The spiking reference was included
for quantitative standardization. In addition, to identify and qualitatively
distinguish between the various forms of mouse MMPs, a standard of human
gelatinase B multimers, monomers and a deletion mutant was included on the
analytical zymography gels. In this way the monomeric and multimeric forms, the
proforms and activation forms of both mouse MMP-2 and MMP-9 were
distinguished. The samples were then separated in 7.5% acrylamide gels
copolymerized with 1 mg ml� 1 porcine gelatin (Sigma-Aldrich, St Louis, MO,
USA), whereafter the gels were washed with 2.5% Triton X-100 (Sigma-Aldrich)
for 40 min and incubated overnight at 37 �C in 50 mM Tris-HCl (pH 7.5)
supplemented with 10 mM CaCl2 (Sigma-Aldrich). The gels were stained with
0.25% Coomassie Brilliant Blue-R (Sigma-Aldrich) and scanned using standard
settings. Band densities were analysed and quantified with ImageJ 1.48 software
(NIH Windows version)42. Information about weight and protein concentration of
all colonic samples was collected and enzyme levels were calculated relative to
tissue amounts (fmol mg� 1).

Colonic gene expression. RNA was extracted from snap-frozen colonic mouse
tissue (Qiagen RNeasy mini kit cat # 74106, Venlo, The Netherlands) and RNA
integrity and quantity was checked with Bioanalyzer 2100 (Agilent, Santa Clara,
CA, USA). RNA sequencing and preparative techniques were performed by the
Genomics Core (UZ Leuven, http://gc.uzleuven.be/). TruSeq stranded mRNA
library preparation (Illumina, San Diego, CA, USA) was performed according to
the manufacturer’s guidelines. Sequencing was performed on the HiSeq2500
platform with a sequencing depth ranging from 9 to 21 M reads per sample
(Illumina). The adaptors were trimmed from the reads with the use of ea_utils
v1.1.2. Reads that were shorter than 25 bp after adaptor trimming were removed.
The pre-processed reads were aligned to the reference genome of Mus musculus
(Mm10) with TopHat v2.0.13. Counting of the reads was performed with HTSeq46

or CuffQuant47. Pathway analysis was performed with Ingenuity Pathway Analysis
(IPA, Qiagen). Raw data have been deposited in BioProject with the accession code
PRJNA374413 (https://www.ncbi.nlm.nih.gov/bioproject/374413).
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Treatment of DSS-induced colitis with peptide inhibitors. Acute colitis was
induced in male and female mice via administration of 2% DSS in the drinking
water for 7 days followed by 2–4 days on normal drinking water. Two peptide
inhibitors (peptide inhibitor A (CPU1) and peptide inhibitor B (CPU2);
Supplementary Table 2) were administered either daily via i.p. injections at a dose
of 250 mg or continuously via implanted osmotic pumps at 30 mg kg� 1 per day
with a release rate of 0.25 ml per hour (pump type 1,002, DURECT Corporation,
ALZET Osmotic Pumps, Cupertino, CA, USA). These doses were determined
based on previously published structure activity relationships and in vivo
dose-response data with these peptide inhibitors in another animal model of acute
inflammation, namely lethal endotoxin shock in mice16. I.p. injections were given
daily both in a therapeutic (starting at day 6) and prophylactic (starting at day 1)
setting. Osmotic pumps were implanted subcutaneously on the back of the mice
according to the manufacturer’s guidelines. Briefly, osmotic pumps were pre-filled
with 0.9% pyrogen-free NaCl, 100mgml� 1 peptide inhibitor A or 100 mgml� 1

peptide inhibitor B and primed at 37 �C in 0.9% pyrogen-free NaCl for 1–2 h before
implantation. Mice were sedated with the use of a mixture of Ketamine
(100 mg ml� 1) and Rompun (2%). The pre-filled and primed osmotic pumps were
then implanted on the back of the mice, between and slightly posterior to the
scapulae. The incision wound was closed with 7 mm wound clips (ALZET Osmotic
Pumps, Cupertino, CA, USA) and a post-analgesic (Buprenorphine, 0.3 mg ml� 1)
was given subcutaneously. Mice were monitored and weighted every other day
until completion of the study. Colonic inflammation and histopathology
parameters were evaluated as described above.

Quantitative RT-PCR. Snap-frozen mouse colonic fragments were mechanically
homogenized with the use of Precellys 24 homogenizer (VWR, Leuven, Belgium).
Total RNA was extracted according to the manufacturer’s guidelines (RNeasy Mini
kit, Qiagen, Hilden, Germany, #74104) and quantified with the use of a Nanodrop
ND-1000 Spectrophotometer (Isogen Life Science, Temse, Belgium). cDNA was
synthesized with the use of High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA). Mmp3, Mmp8, Mmp9 and Tace
mRNA levels were analysed in duplicate on 25 ng cDNA by quantitative RT-PCR
with the use of TaqMan Universal PCR Master Mix from Applied Biosystems and
primer and probe sets from Integrated DNA Technologies (Leuven, Belgium;
Supplementary Table 3). Data were normalized to 18S ribosomal RNA levels48.

Statistical analyses. Statistical analyses were performed using GraphPad Prism
5.03 (GraphPad, La Jolla, CA, USA). Data are represented as medians (interquartile
range), unless otherwise stated, and P values were obtained using two-tailed
Mann–Whitney U testing (*Po0.05, **Pr0.01, ***Pr0.001). Differences were
considered statistically significant at Po0.05. For RNA sequencing data, statistical
comparison of expression values was conducted with edgeR49, DESeq50 and
CuffDiff251. The resulting P values were corrected for multiple testing with
Benjamini–Hochberg to control the FDR. To select significantly DE genes,
a cut-off on FC to genes with an absolute log2-ratio larger than 2 was combined
with genes with an FDR value o10%.

Data availability. RNA sequencing data were generated at the Genomics Core,
UZ Leuven. Data that support the findings of this study have been deposited in
BioProject with the accession code PRJNA374413 (https://www.ncbi.nlm.nih.gov/
bioproject/374413).
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S116–S117 (European Crohnś and Colitis Organisation, Barcelona, 2017)
doi:10.1093/ecco-jcc/jjx002.204.

13. Breynaert, C. et al. Unique gene expression and MR T2 relaxometry patterns
define chronic murine dextran sodium sulphate colitis as a model for
connective tissue changes in human Crohn’s disease. PLoS ONE 8, e68876
(2013).

14. Dubois, B. et al. Resistance of young gelatinase B-deficient mice to experimental
autoimmune encephalomyelitis and necrotizing tail lesions. J. Clin. Invest. 104,
1507–1515 (1999).

15. Kowluru, R. A., Mohammad, G., dos Santos, J. M. & Zhong, Q. Abrogation
of MMP-9 gene protects against the development of retinopathy in
diabetic mice by preventing mitochondrial damage. Diabetes 60, 3023–3033
(2011).

16. Qiu, Z., Zhang, F., Gong, C., Xu, H. & Hu, J. Fusion peptides CPU1 and CPU2
inhibit matrix metalloproteinases and protect mice from endotoxin shock
within a strict time window. Inflammation 38, 2092–2104 (2015).

17. Hu, J. et al. Chemically synthesized matrix metalloproteinase and angiogenesis-
inhibiting peptides as anticancer agents. Anticancer Agents Med. Chem. 14,
483–494 (2014).

18. Nagase, H. & Woessner, J. F. Jr. Matrix metalloproteinases. J. Biol. Chem. 274,
21491–21494 (1999).

19. Liu, H. et al. Constitutive expression of MMP9 in intestinal epithelium
worsens murine acute colitis and is associated with increased levels of
proinflammatory cytokine Kc. Am. J. Physiol. Gastrointest. Liver Physiol. 304,
G793–G803 (2013).

20. Vanden Berghe, T. et al. Passenger mutations confound interpretation
of all genetically modified congenic mice. Immunity 43, 200–209 (2015).

21. Uriu, Y. et al. Rab3-interacting molecule gamma isoforms lacking the
Rab3-binding domain induce long lasting currents but block neurotransmitter
vesicle anchoring in voltage-dependent P/Q-type Ca2þ channels. J. Biol.
Chem. 285, 21750–21767 (2010).

22. Nystrom, M., Westin, U. P., Linder, C. & Ohlsson, K. Secretory leukocyte
protease inhibitor in punch biopsies from human colonic mucosa. Mediators
Inflamm. 10, 269–272 (2001).

23. Schmid, M. et al. Attenuated induction of epithelial and leukocyte serine
antiproteases elafin and secretory leukocyte protease inhibitor in Crohn’s
disease. J. Leukoc. Biol. 81, 907–915 (2007).

24. Reardon, C. et al. Thymic stromal lymphopoetin-induced expression of the
endogenous inhibitory enzyme SLPI mediates recovery from colonic
inflammation. Immunity 35, 223–235 (2011).

25. Bermudez-Humaran, L. G. et al. Serine protease inhibitors protect better
than IL-10 and TGF-beta anti-inflammatory cytokines against mouse
colitis when delivered by recombinant lactococci. Microb. Cell Fact. 14, 26
(2015).

26. Choi, B. D. et al. Secretory leukocyte protease inhibitor is associated with
MMP-2 and MMP-9 to promote migration and invasion in SNU638 gastric
cancer cells. Int. J. Mol. Med. 28, 527–534 (2011).

27. Nelissen, I. et al. Gelatinase B/matrix metalloproteinase-9 cleaves
interferon-beta and is a target for immunotherapy. Brain 126, 1371–1381
(2003).

28. Christoffersson, G. et al. Matrix metalloproteinase-9 is essential for
physiological Beta cell function and islet vascularization in adult mice. Am.
J. Pathol. 185, 1094–1103 (2015).

29. Cauwe, B., Martens, E., Proost, P. & Opdenakker, G. Multidimensional
degradomics identifies systemic autoantigens and intracellular matrix proteins
as novel gelatinase B/MMP-9 substrates. Integr. Biol. (Camb) 1, 404–426
(2009).

30. Lelongt, B. et al. Matrix metalloproteinase 9 protects mice from anti-glomerular
basement membrane nephritis through its fibrinolytic activity. J. Exp. Med. 193,
793–802 (2001).

31. Soldini, D. et al. The combined expression of VPREB3 and ID3 represents a
new helpful tool for the routine diagnosis of mature aggressive B-cell
lymphomas. Hematol. Oncol. 32, 120–125 (2014).

32. Opdenakker, G., Van den Steen, P. E. & Van Damme, J. Gelatinase B:
a tuner and amplifier of immune functions. Trends Immunol. 22, 571–579
(2001).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15384

14 NATURE COMMUNICATIONS | 8:15384 | DOI: 10.1038/ncomms15384 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/bioproject/374413
https://www.ncbi.nlm.nih.gov/bioproject/374413
http://dx.doi.org/10.1093/ecco-jcc/jjx002.204
http://www.nature.com/naturecommunications


33. Spalinger, M. R. et al. NLRP3 tyrosine phosphorylation is controlled
by protein tyrosine phosphatase PTPN22. J. Clin. Invest. 126, 1783–1800
(2016).

34. Zeissig, S. et al. Early-onset Crohn’s disease and autoimmunity associated with
a variant in CTLA-4. Gut 64, 1889–1897 (2015).

35. de Bruyn, M. et al. Infliximab restores the dysfunctional matrix remodeling
protein and growth factor gene expression in patients with inflammatory bowel
disease. Inflamm. Bowel. Dis. 20, 339–352 (2014).

36. Opdenakker, G., Van den Steen, P. E., Laureys, G., Hunninck, K. & Arnold, B.
Neutralizing antibodies in gene-defective hosts. Trends Immunol. 24, 94–100
(2003).

37. Dubois, B., Arnold, B. & Opdenakker, G. Gelatinase B deficiency impairs
reproduction. J. Clin. Invest. 106, 627–628 (2000).

38. Cauwe, B. et al. Deficiency of gelatinase B/MMP-9 aggravates lpr-induced
lymphoproliferation and lupus-like systemic autoimmune disease. J.
Autoimmun. 36, 239–252 (2011).

39. Breynaert, C. et al. Genetic deletion of tissue inhibitor of metalloproteinase-1/
TIMP-1 alters inflammation and attenuates fibrosis in dextran sodium
sulphate induced murine models of colitis. J. Crohns Colitis 10, 1336–1350
(2016).

40. Prescott, D. et al. Loss of phosphoinositide 3-kinase P110gamma is protective
in the acute phase but detrimental in the resolution phase of hapten-induced
colitis. Inflamm. Bowel Dis. 19, 489–500 (2013).

41. Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M. F. Chemically induced
mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546 (2007).

42. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25
years of image analysis. Nat. Methods 9, 671–675 (2012).

43. Woessner, J. F. Jr. The determination of hydroxyproline in tissue and protein
samples containing small proportions of this imino acid. Arch. Biochem.
Biophys. 93, 440–447 (1961).

44. Vandooren, J., Geurts, N., Martens, E., Van den Steen, P. E. & Opdenakker, G.
Zymography methods for visualizing hydrolytic enzymes. Nat. Methods 10,
211–220 (2013).

45. Descamps, F. J., Martens, E. & Opdenakker, G. Analysis of gelatinases
in complex biological fluids and tissue extracts. Lab. Invest. 82, 1607–1608
(2002).

46. Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to
work with high-throughput sequencing data. Bioinformatics 31, 166–169
(2015).

47. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28, 511–515 (2010).

48. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25,
402–408 (2001).

49. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140 (2010).

50. Anders, S. & Huber, W. Differential expression analysis for sequence count
data. Genome Biol. 11, R106 (2010).

51. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution
with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

Acknowledgements
M.d.B. and C.B. were supported by a PhD fellowship of the Agency for Innovation by
Science and Technology in Flanders (IWT). G.O. and G.V.A. were supported by grants
from the Research Foundation Flanders (FWO-Vlaanderen; grant number: G077513N
and G069014). G.O. and J.V.D. were supported by the Concerted Research Actions of the
Flemish Government (GOA 2013/015). I.A. is a Postdoctoral Researcher and S.V., G.V.A.
and M.F. are Senior Clinical Investigators of FWO-Vlaanderen. G.M. received grant

support from the KU Leuven (C12/15/016). This work was further supported by a grant
from the Broad Medical Research Program of the Broad Foundation (IBD-0319R). We
would like to thank Erik Martens (Laboratory of Immunobiology, Rega Institute for
Medical Research) for assistance in experimental work with regard to gelatin
zymography analyses at the Rega Institute for Medical Research, Jonathan Cremer
(Laboratory of Clinical Immunology, KU Leuven) for assistance with histopathological
analyses and Prof Dr Em. Jan Ceuppens for critical revision of the manuscript. In
addition, our gratitude is also directed towards Dr Pedro J. Gomez Pinilla, Wiebe
Vanhove and Brecht Creyns (Translational Research Center for Gastrointestinal
Disorders/TARGID, KU Leuven and Laboratory of Clinical Immunology, KU Leuven)
for their practical assistance with regard to the TNBS mouse model.

Author contributions
All authors made substantial contributions to the submitted work. Conception and
design of the study; acquisition, analysis and interpretation of the data; and drafting all
article versions by M.d.B.; acquisition, analysis and interpretation of the data; and critical
revision of the article by C.B.; interpretation of data and critical revision of the article by
I.A.; acquisition and interpretation of data by K.G. and G.D.H.; assistance for the TNBS
mouse model, and interpretation and critical revision of the data by G.M.; provision of
peptide inhibitors, data acquisition and analysis by J.H.; critical revision of the article for
intellectual content by J.V.D., B.A., M.F., G.V.A. and S.V.; conception, design and
supervision of the study, interpretation of data, critical revision of all text versions for
intellectual content and final approval of the submitted version by G.O. All authors had
access to the study data and approved the final manuscript. No external writing
assistance was provided.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: G.V.A. provided financial support for research from Abbvie and
Ferring; lecture fee(s) from Janssen-Cilag, Merck, Abbvie and consultancy for PDL
BioPharma, UCB Pharma, Sanofi-Aventis, Abbvie, Ferring, Novartis, Biogen Idec,
Janssen Biologics, NovoNordisk, Zealand Pharma A/S, Millenium/Takeda, Shire,
Novartis and BMS; S.V. provided grant support, lecture fees and consulting fees from
Abbvie, Centocor, MSD, Takeda, Pfizer, Shire, Tillotts Pharma, Hospira, Munipharma
and Genentech/Roche; M.F. reports fees from MSD, Janssen, Abbvie, Ferring, Chiesi,
Tillotts and Zeria. G.D.H. received consultancy fees from Genentech, Centocor and
Galapagos. The remaining authors declare no conflict of financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: de Bruyn, M. et al. Inhibition of gelatinase B/MMP-9 does
not attenuate colitis in murine models of inflammatory bowel disease. Nat. Commun.
8, 15384 doi: 10.1038/ncomms15384 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15384 ARTICLE

NATURE COMMUNICATIONS | 8:15384 | DOI: 10.1038/ncomms15384 | www.nature.com/naturecommunications 15

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Inhibition of gelatinase B/MMP-9 does not attenuate colitis in murine models of inflammatory bowel disease
	Introduction
	Results
	Genetic background and microbiota of MMP-9−/− and WT mice
	Similar loss of body weight in MMP-9−/− and WT mice
	Similar acute colonic inflammation in MMP-9−/− and WT mice
	Similar chronic colonic inflammation in MMP-9−/− and WT mice
	Similar remodelling and fibrosis in MMP-9−/− and WT mice
	Similar systemic inflammation in MMP-9−/− and WT mice
	Similar MMP-2 protein levels in WT and MMP-9−/− mice
	Colonic gene expression profiles of WT and MMP-9−/− mice
	Similar TNBS-induced colitis in MMP-9−/− and WT mice
	Pharmacological inhibition of MMP-9 does not improve colitis
	MMP inhibition alters colonic MMP mRNA expression

	Discussion
	Methods
	Mice
	Dextran sodium sulphate-induced colitis
	Trinitrobenzenesulfonic acid-induced colitis
	Evaluation of colonic inflammation and histology
	Evaluation of tissue remodelling and fibrosis
	Gelatin zymography
	Colonic gene expression
	Treatment of DSS-induced colitis with peptide inhibitors
	Quantitative RT-PCR
	Statistical analyses
	Data availability

	Additional information
	Acknowledgements
	References




