

# 中华人民共和国国家环境保护标准

HJ □□□-201□

# 火电厂烟气脱硫工程技术规范 海水脱硫法 (征求意见稿)

Technical specification of seawater flue gas desulfurization project for thermal power plant

201 🗆 – 🗆 🗆 发布

201 🗆 – 🗆 🗆 实施

环境保护部 %布

## 目 次

| 前言           | II |
|--------------|----|
| 1 适用范围       | 1  |
| 2 规范性引用文件    | 1  |
| 3 术语和定义      | 2  |
| 4. 污染物与污染负荷  | 3  |
| 5 总体要求       | 4  |
| 6 工艺设计       | 5  |
| 7 工艺设备与材料    | 8  |
| 8 检测与过程控制    | 9  |
| 9 主要辅助工程     | 10 |
| 10 劳动安全与职业卫生 | 14 |
| 11 工程施工与验收   | 15 |
| 12 运行与维护     | 16 |
| 附 录 A        | 18 |

## 前言

为贯彻执行《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》,规范火电 厂烟气海水脱硫工程建设,改善环境质量,保障人体健康,制定本标准。

本标准规定了火电厂烟气海水脱硫工程的设计、施工与验收、运行与维护等的技术要求。

本标准为指导性文件。

本标准为首次发布。

本标准由环境保护部科技标准司组织制订。

本标准主要起草单位: 北京龙源环保工程有限公司、中国环境科学学会。

本标准环境保护部 XXXX 年 XX 月 XX 日批准, 自XXXX 年 XX 月 XX 日起实施。

本标准由环境保护部负责解释。

### 火电厂烟气脱硫工程技术规范-海水脱硫法

#### 1 适用范围

本标准规定了火电厂烟气采用海水脱硫法脱硫工程的设计、施工与验收、运行与维护等的技术要求。

本标准适用于滨海单机容量为300 MW及以上火电厂海水脱硫法烟气脱硫工程,300 MW以下火电厂采用海水脱硫法烟气脱硫时可参照执行。

#### 2 规范性引用文件

下列文件中的条款通过本标准的引用成为本标准的条款。凡是不注日期的引用文件,其最新版本适用于本标准。

| GB 3097    | 海水水质标准               |
|------------|----------------------|
| GB 12348   | 工业企业厂界环境噪声排放标准       |
| GB 12801   | 生产过程安全卫生要求总则         |
| GB 13223   | 火电厂大气污染物排放标准         |
| GB 50016   | 建筑设计防火规范             |
| GB/T 50033 | 建筑采光设计标准             |
| GB 50040   | 动力机器基础设计规范           |
| GB 50140   | 建筑灭火器配置设计规范          |
| GB 50222   | 建筑内部装修设计防火规范         |
| GB 50229   | 火力发电厂与变电所设计防火规范      |
| GB 50243   | 通风与空调工程施工质量验收规范      |
| GBJ 22     | 厂矿道路设计规范             |
| GBJ 87     | 工业企业噪声控制设计规范         |
| GBZ 1      | 工业企业设计卫生标准           |
| DL 5009.1  | 电力建设安全工作规程 (火力发电厂部分) |
| DL/T 5029  | 火力发电厂建筑装修设计标准        |
| DL/T 5035  | 火力发电厂采暖通风与空气调节设计技术规程 |
| DL/T 5044  | 电力工程直流系统设计技术规程       |

1

| DL 5053   | 火力发电厂劳动安全与工业卫生设计规程       |
|-----------|--------------------------|
| DL/T 5136 | 火力发电厂、变电所二次接线设计技术规程      |
| DL/T 5153 | 火力发电厂厂用电设计技术规定           |
| DL/T 5196 | 火力发电厂烟气脱硫设计技术规程          |
| DL/T 5339 | 火力发电厂水工设计规范              |
| DL/T 5436 | 火电厂烟气海水脱硫工程调整试运及质量验收评定规程 |
| HJ/T 75   | 固定污染源烟气排放连续监测技术规范        |
| HJ/T 76   | 固定污染源排放烟气连续监测系统技术要求及监测方法 |

《建设项目(工程)竣工验收办法》(国家计委 1990年)

《建设项目环境保护竣工验收管理办法》(国家环境保护总局 2001年)

#### 3 术语和定义

下列术语和定义适用于本标准。

#### 3.1 海水脱硫法 seawater flue gas desulfurization

本规范中, 指使用海水作为吸收剂的湿法烟气脱硫工艺。

#### 3.2 吸收剂 absorbent

指脱硫工艺中用于脱除二氧化硫(SO<sub>2</sub>)等有害物质的反应剂。海水法脱硫工艺使用的吸收剂即为海水,一般为来自滨海火电机组凝汽器的循环冷却海水。

#### 3.3 吸收塔 absorber

指脱硫工艺中脱除SO<sub>2</sub>等有害物质的反应装置。

#### 3.4 海水恢复系统 seawater recovery system

指将吸收塔出口脱硫后的海水经中和、曝气等方法使最终排放的海水水质恢复到满足相关水质 要求的系统。一般包括曝气池、曝气风机和曝气器等。

#### 3.5 曝气池 aeration basin

指利用中和、曝气方法对海水进行水质恢复处理的构筑物。

#### 3.6 烟气事故冷却系统 emergency water quench system

锅炉烟气温度在事故工况下超过脱硫装置入口设计烟气温度时,为保护脱硫系统设备及防腐材料的安全运行而设置的烟气紧急冷却设备和系统。

#### 4. 污染物与污染负荷

#### 4.1 脱硫装置入口烟气中的SO2 含量

脱硫装置入口烟气中的SO2含量可根据公式(1)估算:

$$M_{S02} = 2 \times K \times Bg \times (1 - \frac{q_4}{100}) \frac{S_{ar}}{100}$$
 (1)

式中:

Mso2——脱硫装置入口烟气中的SO2 含量, t/h;

K ——燃料中的含硫量燃烧后氧化成SO₂的份额(煤粉炉一般取0.9);

Bg ——锅炉BMCR负荷时的燃煤量, t/h;

q4 ——锅炉机械未完全燃烧的热损失,%;

Sar ——燃料的收到基硫分,%。

#### 4.2 脱硫效率

指由脱硫装置脱除的SO<sub>2</sub>量与未经脱硫前烟气中所含SO<sub>2</sub>量的百分比,按公式(2)计算:

脱硫效率 = 
$$(C_1 - C_2)/C_1 \times 100\%$$
 (2)

式中:

 $C_1$ ——脱硫前烟气中 $SO_2$ 的折算浓度(过剩空气系数燃煤取1.4,燃油、燃气取1.2), $mg/Nm^3$ (干基);

 $C_2$ ——脱硫后烟气中 $SO_2$ 的折算浓度(过剩空气系数燃煤取1.4,燃油、燃气取1.2), $mg/Nm^3$ (干基)。

新建脱硫装置的设计工况宜采用锅炉最大连续工况(BMCR)、燃用设计燃料时的烟气参数,校核工况采用锅炉最大连续工况(BMCR)、燃用校核燃料时的烟气参数。已建电厂加装烟气脱硫装置时,其设计工况和校核工况宜根据脱硫装置入口处实测烟气参数确定,并充分考虑燃料的变化趋势。烟气中其它污染物成分(如氯化氢(HC1)、氟化氢(HF)、三氧化硫(SO<sub>3</sub>))的设计数据应依据燃料分析数据计算确定。

- 4.3 海水法烟气脱硫装置的系统设计脱硫效率应满足当地环保要求,一般不低于95%。
- **4.4** 海水法烟气脱硫装置处理后的外排海水水质应符合批准的海洋环境影响评价文件关于排放海域功能区划分的要求,满足排放海域功能区的海水水质标准。
- **4.5** 使用烟气海水脱硫工艺的锅炉,限于单台机组凝汽器所使用的冷却海水量有限,其燃煤平均含 硫量(收到基)宜不大于1%。
- 4.6 当机组既有冷却海水量不能满足脱硫工艺需求时,应补充不足的海水量。补充海水措施应经技

术经济综合比较合理后确定。

#### 5 总体要求

#### 5.1 一般规定

- a) 烟气脱硫工程的建设,应按国家的基本建设程序进行。设计文件应按规定的内容和深度完成 报批和批准手续。
- b)新建、改建、扩建火电厂或供热锅炉的烟气脱硫装置应和主体工程同时设计、同时施工、同时投产使用。
- c)烟气脱硫工程建设,除应符合本规范外,还应符合国家有关工程质量、安全、卫生、消防等 方面的强制性标准条文的规定。
  - d) 脱硫装置的设计、建设,应符合GB13223烟气排放标准要求。
- e) 脱硫岛的设计、建设,应采取有效的隔声、消声、绿化等降低噪声的措施,噪声和振动控制的设计应符合GBJ87和GB50040 的规定,各厂界噪声应达到GB12348的要求。

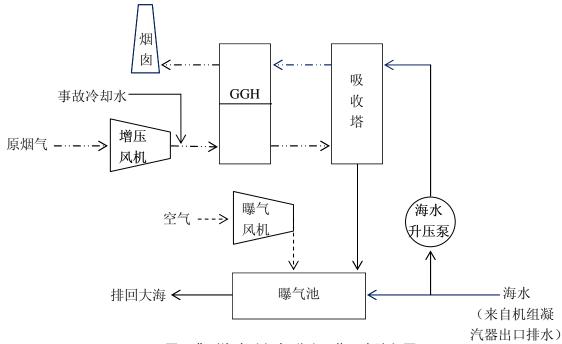
#### 5.2 总平面布置

#### 5.2.1 一般规定

- 5.2.1.1 脱硫装置的总体设计应符合下列要求:
  - ——工艺流程合理,烟道短捷;
  - ——交通运输便捷;
  - ——方便施工,有利于维护检修;
  - ——合理利用地形、地质条件;
  - ——充分利用厂内公用设施;
  - ——节约用地,工程量小,运行费用低;
  - ——符合环境保护、劳动安全和工业卫生要求。
- **5.2.1.2** 技改工程应避免拆迁运行机组的生产建(构)筑物和地下管线。当不能避免时,应采取合理的过渡措施。

#### 5.2.2 布置要求

- **5.2.2.1** 海水脱硫总平面应结合工艺流程和场地条件因地制宜布置,一般可分为吸收塔区域和曝气 池区域。
- 5. 2. 2. 2 吸收塔区域宜布置在烟囱附近,其建、构筑物根据工艺流程确定,一般布置有吸收塔、烟道支架、GGH支架、增压风机基础及检修支架、电控楼、CEMS小间等;曝气池区域宜布置在循环水


排水沟附近,其建构筑物亦根据工艺流程确定,一般布置有海水升压泵房、曝气风机房、曝气池、取样设备间等;如两区域相距较远,可在曝气风机房内设置就地控制设备间。

- 5. 2. 2. 3 脱硫场地的标高应不受洪水危害。脱硫装置若在主厂房区环形道路内,防洪标准与主厂房区相同;若在主厂房区环形道路外,防洪标准与其他场地相同。
- 5. 2. 2. 4 脱硫装置主要设施宜与锅炉尾部烟道及烟囱零米高程相同,并与其他相邻区域的场地高程相协调,有利于交通联系、场地排水和减少土石方工程量。
- 5. 2. 2. 5 新建电厂,脱硫场地的平整及土石方平衡应由主体工程统一考虑。技改工程,脱硫场地应力求土石方自身平衡。
- 5.2.2.6 建筑物室内、外地坪高差应符合下列要求:
  - a)有车辆出入的建筑物室内、外地坪高差,一般为0.15~0.30 m;
  - b)无车辆出入的室内、外高差可大于0.30 m;
  - c)易燃、可燃、易爆、腐蚀性液体贮存区地坪宜低于周围道路标高。
- 5. 2. 2. 7 当开挖工程量较大时,可采用阶梯布置方式,但台阶高差不宜超过5 m,并设台阶间的连接踏步。挡土墙高度3 m及以上时,墙顶应设安全护栏。同一套脱硫装置宜布置在同一台阶场地上。卸腐蚀性液体的场地宜设在较低处,且地坪应做防腐蚀处理。
- 5.2.2.8 脱硫场地的排水方式应与主体工程相统一。
- 6 工艺设计

#### 6.1 工艺流程

- **6.1.1** 海水法烟气脱硫装置应由海水供应系统、烟气系统、二氧化硫吸收系统和海水恢复系统等组成。其典型的海水法烟气脱硫工艺流程如图1所示。
- 6.1.2 锅炉烟气经进口挡板门、并由脱硫增压风机升压后,经烟气换热器(GGH)降温后进入吸收塔, 洗涤脱硫后的烟气经吸收塔顶部设置的除雾器除去携带的小液滴后再经烟气换热器(GGH)升温,最 后经出口挡板门从烟囱排放。二氧化硫吸收系统设备主要包括吸收塔及其内部件。
- 6.1.3 脱硫后的酸性海水流入海水恢复系统曝气池,经与海水掺混、中和、曝气等方式处理,恢复水质后达标排海。
- 6.1.4 海水脱硫装置的海水总需求量包括通往吸收塔和曝气池的海水量。
- 6.2 脱硫装置主工艺系统
- 6.2.1 海水供应系统
- 6.2.1.1 300MW及以上机组的吸收塔宜采用单元制供水系统。
- 6.2.1.2 除海水升压泵出口的供水管路外,海水供应管路宜采用自流方式,并不应影响机组循环水

#### 系统的安全运行。



- 图1 典型海水法烟气脱硫工艺示意流程图
- 6.2.1.3 海水升压泵的数量应按照吸收塔的数量、型式和运行可靠性确定。海水升压泵应设备用泵。
- 6.2.1.4 海水升压泵应设取水前池。
- 6.2.1.5 海水升压泵出口处应设防水锤措施。
- 6.2.1.6 海水升压泵过流部件材质应能满足海水腐蚀环境运行要求。
- 6.2.1.7 海水管道设计时应充分考虑工作介质对管道系统的腐蚀与磨损。海水管道宜采用直埋方式 敷设。管道内介质流速的选择既要考虑避免海生物生长,同时又要考虑管道的磨损和压力损失尽可 能小。
- 6.2.1.8 海水供应管道上的阀门宜选用蝶阀,阀门的通流直径宜与管道一致。阀门与管道之间宜采用法兰连接。
- 6.2.1.9 吸收塔供水管道上应设置排空措施,每50-100米宜设置检修人孔。
- 6.2.1.10 吸收塔供水管道上应设置滤网。

#### 6.2.2 烟气系统

- 6.2.2.1 脱硫增压风机宜与引风机合并设置。当条件不允许时,应单独设置增压风机。
- 6.2.2.2 脱硫增压风机应按下列要求考虑:
- a) 脱硫增压风机宜选用轴流式风机。当机组容量为300 MW 及以下容量时,也可采用高效离心风机。
  - b) 当脱硫装置为单元制设置时,增压风机型式及数量应与机组引风机相同。

- c) 当多台机组合用一座吸收塔时,应根据技术经济比较后确定风机数量。
- d)增压风机的基本风量按吸收塔的设计工况下的烟气量考虑。脱硫增压风机的风量裕量不低于10%,另加不低于10℃的温度裕量。脱硫增压风机的基本压头为脱硫装置本身的阻力及脱硫装置进出口的压差之和,压头裕量不低于20%。
  - e) 当增压风机并联运行时,每台增压风机出、入口应分别设置挡板门。
- 6.2.2.3 应根据建设项目环境影响评价报告书审批意见确定是否设置烟气换热器(GGH)。
- 6.2.2.4 烟气换热器的受热面均应采取防低温腐蚀、防磨、防堵塞、防粘污等措施。
- 6.2.2.5 烟气换热器受热面应具有良好的清灰和冲洗措施,并应在运行中加强维护管理。
- 6.2.2.6 对于设有烟气换热器的脱硫装置,应从烟气换热器原烟道侧出口处至烟囱的烟道采取防腐措施;不装设烟气换热器的脱硫装置,应从距离吸收塔入口至少5 m处开始采取防腐措施。
- 6.2.2.7 防腐烟道的结构设计应满足相应的防腐要求,并保证烟道的振动和变形在允许范围内,避免造成防腐层脱落。
- 6.2.2.8 脱硫装置原烟气设计温度应采用锅炉最大连续工况(BMCR)下燃用设计燃料时的空预器 出口烟气温度并留有一定的裕量。对于新建机组,应保证运行温度超过设计温度50℃,叠加后的温 度不超过180℃的条件下的长期运行。烟气换热器下游的原烟气烟道和净烟气烟道设计温度应至少考 虑30℃超温。

#### 6.2.2.9 烟气事故冷却系统

- a)烟气事故冷却系统的水源选择应结合所需冷却水流量和水源供给能力来确定,一般宜采用电 厂工业水或消防水,亦可结合使用。
  - b) 烟气事故冷却水应经喷嘴充分雾化后加入烟道。
- c)烟气事故冷却系统的冷却水喷淋位置应设置在增压风机或引风机(无增压风机时)与GGH或吸收塔(无GGH时)之间的烟道上,并留有确保雾化冷却水被烟气蒸干所需时间对应的烟道长度。
- d) 烟气事故冷却系统一般应设置冷却水缓冲水箱。缓冲水箱的安装高度应满足喷嘴喷淋雾化对 压头的要求,水箱容积应至少满足5分钟的消耗水量。缓冲水箱应配有补水泵等补水措施,补水泵应 使用保安电源。
  - e) 当补水水源可靠且水源压力满足喷嘴使用压力时,也可由补水水源直接供水。
  - f) 若使用供水泵直接供水,其泵的扬程应满足喷嘴使用压力的要求。供水泵应使用保安电源。

#### 6.2.3 二氧化硫吸收系统

- 6.2.3.1 吸收塔的数量应根据锅炉容量、脱硫装置可靠性要求、海水供应条件等确定。300 MW及以上机组宜一炉配一塔。海水脱硫工艺可采用填料塔、喷淋塔或其它塔型,采用气液逆流方式。塔内设备材质应能适应塔内温度和腐蚀的要求。
- 6.2.3.2 吸收塔塔体的制作可以采用混凝土结构或钢结构。

- 6.2.3.3 填料塔的布水层可只设一层;喷淋塔喷淋层的数量可根据脱硫烟气量、烟气SO<sub>2</sub>浓度、脱硫效率、海水水质及温度等因素设置,不宜少于三层。
- 6.2.3.4 吸收塔应装设除雾器。正常运行工况下,除雾器出口烟气中的雾滴浓度应不大于75 mg/Nm<sup>3</sup>。
- 6.2.3.5 吸收塔应设置足够数量和大小的人孔门,以满足检修维护的要求。
- 6.2.3.6 吸收塔应设置停运后塔底的排空措施。
- 6.2.3.7 吸收塔排水点应设置手动取样点。
- 6.2.3.8 吸收塔外应设置供检修维护的平台和扶梯,平台设计荷载不应小于4 kN/m²,平台宽度不小于1.2 m,塔内不应设置固定式的检修平台。

#### 6.2.4 海水恢复系统

- 6.2.4.1 海水恢复曝气池的数量应根据吸收塔配置情况、曝气池入口海水分配要求、海水供应条件、 检修及可靠性要求等确定。300 MW及以上机组宜采用一炉配一座曝气池。
- 6. 2. 4. 2 海水恢复系统的工艺设计及设备选型应同时满足对排放海水中COD、pH值及溶解氧的要求。
- 6.2.4.3 曝气池内有效曝气区域的大小应根据脱硫装置入口烟气参数、脱硫效率、海水水质条件、海水排水水质要求和环境温度等因素确定,应有良好的运行经济性。
- 6. 2. 4. 4 曝气池内液位应根据虹吸井堰上水头和循环水排水沟出口处的设计高潮位以及海水排水沟 道的阻力等因素确定。海水潮位变化不应影响曝气池的正常运行,曝气池应有和虹吸井同等的防止 高潮位海水外溢的措施。
- 6.2.4.5 曝气风机选型应按照曝气池设计液位进行选型计算。风机型式宜采用离心风机,可不设备用,数量不少于两台。
- **6.2.4.6** 鼓风曝气系统的设置,从整体上应具有节约能量、组成简单、安装及维修管理方便,易于排除故障等特点。
- 6.2.4.7 曝气器应选用布气均匀、阻力小、不易堵塞、牢固而耐腐蚀、运行维修简便、寿命长的类型。
- 6.2.4.8 曝气池的设计应考虑池内海水排空和检修的措施。
- 6.2.4.9 曝气池主体宜采用钢筋混凝土结构。曝气池内接触海水的曝气区域应采取防腐措施;曝气池内所有暴露于盐雾和水气的设备、管道、平台扶梯和支架都应有防盐雾腐蚀措施;应尽量避免将易受腐蚀的设备和设施布置在曝气池附近。
- 6.2.4.10 曝气池区域应有良好的控制噪声措施。

#### 7 工艺设备与材料

#### 7.1 一般规定

- 7.1.1 工艺设备与材料的选择应本着经济、适用,满足脱硫装置特定工艺要求,选择具有长期运行可靠性和较长使用寿命的设备与材料。
- 7.1.2 主要工艺设备的选择和性能要求见本规范第6章。
- 7.1.3 通用材料应在火电厂常用的材料中选取。
- 7.1.4 对于接触腐蚀性介质的部位,应择优选取合适的材料满足其防腐要求。

#### 7.2 金属材料

- 7.2.1 金属材料宜以碳钢材料为主。对金属材料表面可能接触腐蚀性介质的区域,应根据脱硫工艺不同部位的实际情况,衬抗腐蚀性和磨损性强的非金属材料。
- 7.2.2 当以金属材料作为承压部件,衬非金属材料作为防腐部件时,应充分考虑非金属材料与金属材料之间的粘结强度。同时,承压部件的自身设计应确保非金属材料能够长期稳定地附着在承压部件上。
- 7.2.3 对于接触腐蚀性介质的某些部位,如果采用碳钢衬非金属材料难以达到工程实际应用要求,应根据介质的腐蚀性和磨损性,采用以镍基材料为主的不锈钢。当经过充分论证后,部分区域也可采用具有抗腐蚀性的低合金钢。其适用介质条件见附录A表A.1。

#### 7.3 非金属材料

- 7.3.1 非金属材料主要可选用玻璃鳞片树脂、玻璃钢、塑料、橡胶、陶瓷类产品用于防腐蚀和磨损, 其适宜的使用部位见附录A表A.2。
- 7.3.2 玻璃鳞片树脂主要性能见附录A表A.3。
- 7.3.3 丁基橡胶主要性能见附录A表A.4。
- 8 检测与过程控制
- 8.1 热工自动化系统
- 8.1.1 热工自动化水平
- 8.1.1.1 脱硫装置应采用集中监控方式,实现脱硫装置启动、正常运行工况的监视和调整、停机和事故处理。
- 8.1.1.2 脱硫装置宜采用分散控制系统(DCS), 其功能包括数据采集和处理系统(DAS)、模拟量控制系统(MCS)、顺序控制系统(SCS)及联锁保护、脱硫厂用电源系统监控等。
- 8.1.1.3 脱硫控制系统官纳入主机组控制系统。
- 8.1.2 脱硫控制室及控制设备间
- 8.1.2.1 脱硫装置可设置独立控制室。

- 8.1.2.2 脱硫控制设备间宜设置在脱硫岛内。
- 8.1.2.3 脱硫各分系统布置比较分散时,可分别设置就地控制设备间。

#### 8.1.3 热工检测及控制

- 8.1.3.1 脱硫装置应有完善的数据采集和处理、模拟量控制、顺序控制、联锁、保护、报警等功能, 并应在脱硫控制系统中实现。
- 8.1.3.2 保护系统指令应具有最高优先级;事件记录功能应能进行保护动作原因分析。
- 8.1.3.3 重要热工测量项目仪表应双重或三重化冗余设置。
- 8.1.3.4 脱硫装置与机组进行交换的重要信号应采用硬接线方式。
- 8.1.3.5 脱硫装置可设必要的工业电视监视系统。

#### 8.2 烟气分析仪表

- 8.2.1 脱硫装置烟气系统应设置性能检测点和实时监视脱硫烟气排放数据烟气分析仪表。
- 8.2.2用于为烟气脱硫装置实现运行控制和性能考核提供数据的烟气分析仪表,其检测点分别设在烟气脱硫装置进口和出口处,检测项目至少应包括SO<sub>2</sub>、O<sub>2</sub>。
- 8.2.3用于监测烟气污染物排放的监测仪器(CEMS),应符合环保部门的有关规定。

#### 8.3 海水分析仪表

- 8.3.1 海水供应管路上应装设压力和/或流量表计。
- 8.3.2 曝气池出口应设有pH和溶解氧(DO)在线检测仪表,COD测量可设置手动取样点人工分析。

#### 9 主要辅助工程

#### 9.1 电气系统

#### 9.1.1 供电系统

- 9.1.1.1 脱硫装置高压、低压厂用电电压等级应与发电厂主体工程一致。
- 9.1.1.2 脱硫装置厂用电系统中性点接地方式应与发电厂主体工程一致。
- 9.1.1.3 脱硫工作电源的引接:
- a) 脱硫高压工作电源宜由高压厂用工作母线引接,当技术经济比较合理时,也可设脱硫高压变压器,从发电机出口引接。
- b) 已建电厂加装烟气脱硫装置时,如果高压厂用工作变压器有足够备用容量,且原有高压厂用 开关设备的短路动热稳定值及电动机启动的电压水平均满足要求时,脱硫高压工作电源应从高压厂 用工作母线引接,否则应设脱硫高压变压器。

- c) 脱硫低压工作电源可设置低压工作变压器,或就近由可靠的低压工作段供电。
- 9.1.1.4 脱硫高压负荷可设脱硫高压母线段供电,也可直接接于高压厂用工作段或公用段。当设脱硫高压母线段时,每炉宜设1段,并设置备用电源。
- 9.1.1.5 脱硫高压备用电源宜由发电厂启动/备用变压器低压侧引接。当脱硫高压工作电源由高压厂用工作母线引接时,其备用电源也可由另一高压厂用工作母线引接。

#### 9.1.2 直流系统

当设脱硫高压母线段时,宜设脱硫直流系统。脱硫装置直流系统可由机组直流系统供电,当脱硫装置布置离主厂房较远时,也可设置独立直流系统。

#### 9.1.3 交流保安电源和交流不停电电源(UPS)

- 9.1.3.1 脱硫装置可设单独的交流保安母线段。当主厂房交流保安电源的容量足够时,脱硫交流保安母线段宜由主厂房交流保安电源供电,否则可由单独设置的能快速启动的柴油发电机供电。
- 9.1.3.2 脱硫装置交流不停电负荷宜由机组UPS系统供电。当脱硫装置布置离主厂房较远时,也可单独设置UPS。

#### 9.1.4 二次线

- 9.1.4.1 脱硫电气系统的监控宜纳入脱硫控制系统。
- 9.1.4.2 脱硫高压变压器的保护应纳入发变组保护装置。

#### 9.2 建筑与结构

#### 9.2.1 建筑

#### 9.2.1.1 一般规定

- a) 脱硫岛建筑设计应根据生产流程、功能要求、自然条件、建筑材料和建筑技术等因素,结合工艺设计,合理组织平面布置和空间组合,注意建筑群体的效果及与周围环境的协调。
  - b) 脱硫岛的建(构)筑物的防火设计应符合GB50229及国家其他有关防火标准和规范的要求。
  - c) 脱硫岛的建筑物室内噪声控制设计标准应符合GBJ87的规定。
  - d) 脱硫岛的建筑设计除执行本规定外,应符合国家和行业的现行有关设计标准的规定。

#### 9.2.1.2 采光和自然通风

- a) 脱硫岛的建筑物宜优先考虑天然采光,建筑物室内天然采光照度应符合GB50033的要求。
- b) 一般建筑物宜采用自然通风,墙上和楼层上的通风孔应合理布置,避免气流短路和倒流,并 应减少气流死角。

#### 9.2.1.3 室内外装修

- a) 建筑物的室内外墙面应根据使用和外观需要进行适当处理,地面和楼面材料除工艺要求外, 宜采用耐磨、易清洁的材料。
  - b) 脱硫建筑物各车间室内装修标准应按DL/T5029中同类性质的车间装修标准执行。

#### 9.2.2 结构

- 9.2.2.1 火力发电厂脱硫工程土建结构的设计除应符合本标准的规定外,尚应符合现行国家规范及行业标准的要求。
- 9.2.2.2 屋面、楼(地)面在生产使用、检修、施工安装时,由设备、管道、材料堆放、运输工具等重物引起的荷载,以及所有设备、管道支架作用于土建结构上的荷载,均应由工艺设计专业提供。 其楼(屋)面活荷载的标准值及其组合值、频遇值和准永久值系数应按表1的规定采用。
- 9.2.2.3 作用在结构上的设备荷载和管道荷载(包括设备及管道的自重),设备、管道及容器中的填充物重,应按活荷载考虑。其荷载组合值、频遇值和准永久值系数均取1.0。其荷载分项系数取1.3。

项次 类 别 标准值/kN/m<sup>2</sup> 准永久值系数ψα 组合值系数 $\psi_c$ 频遇值系数ψ<sub>f</sub> 配电装置楼面 1 6.0 0.9 0.8 0.8 控制室楼面 4.0 0.8 0.8 0.8 电缆夹层 0.7 0.7 3 4.0 0.7 曝气风机房 6.0 0.8 4 0.8 0.8 海水升压泵房 5 6.0 0.8 0.8 0.8 作为设备通道的混 6 3.5 0.5 0.7 0.5 凝土楼梯

表1 建筑物楼(屋)面均布活荷载标准值及组合值、频遇值和准永久值系数

- 9.2.2.4 脱硫建、构筑物抗震设防类别按丙类考虑,地震作用和抗震措施均应符合本地区抗震设防 烈度的要求。
- 9.2.2.5 计算地震作用时,建、构筑物的重力荷载代表值应取恒载标准值和各可变荷载组合值之和。各可变荷载的组合值系数应按表2采用。

表2 计算重力荷载代表值时采用的组合值系数

| 可变荷载的种类           |            | 组合值系数 |
|-------------------|------------|-------|
| 一般设备荷载(如管道、设备支架等) |            | 1.0   |
| 楼面活荷载             | 按等效均布荷载计算时 | 0. 7  |
| 及四百四次             | 按实际情况考虑时   | 1.0   |
| 屋面活荷载             |            | 0     |

#### 9.3 暖通及消防系统

#### 9.3.1 一般规定

- 9.3.1.1 脱硫岛内应设置采暖、通风与空气调节系统,系统的设计、施工应符合DL/T5035 和GB50243 及国家有关现行标准。
- 9.3.1.2 脱硫岛应有完整的消防给水系统,还应按消防对象的具体情况设置火灾自动报警装置和专用灭火装置,并应合理配置灭火器。脱硫岛建(构)物及各工艺系统的消防设计应符合GB50229 及GB50016等规范的要求。

#### 9.3.2 采暖通风

- 9.3.2.1 脱硫岛区域建筑物的采暖应与其他建筑物一致。当厂区设有集中采暖系统时,采暖热源宜由厂区采暖系统提供。
- 9.3.2.2 对位于非集中供暖地区且无集中供暖系统的电厂,脱硫岛区域建筑物的采暖可以采用空调器、电加热暖风器等方式采暖。
- 9.3.2.3 脱硫岛区域建筑物的采暖应选用不易积尘的散热器供暖,当散热器布置上有困难时,可设置暖风机。
- 9.3.2.4 脱硫岛内建筑物冬季采暖室内计算温度按表3采用。

 房间名称
 采暖室內计算温度/℃
 房间名称
 采暖室內计算温度/℃

 曝气风机机房
 16
 GGH 设备间
 16

 海水升压泵间
 16
 GGH 支架间
 10

 取样间
 10

表3 冬季采暖室内计算温度

- 9.3.2.5 电缆夹层不必设置采暖设施。
- 9.3.2.6 脱硫岛内控制室、电子设备间及CEMS小间应设置空气调节装置。室内设计参数应根据设备要求确定。
- 9.3.2.7 在寒冷地区,通风系统的进、排风口宜考虑防寒措施。
- 9.3.2.8 通风系统的进风口宜设在清洁干燥处,电缆夹层不应作为通风系统的吸风地点。在风沙较大地区,通风系统应考虑防风沙措施。在粉尘较大地区,通风系统应考虑防尘措施。
- 9.3.2.9 脱硫岛内控制室、电子设备间、曝气风机房等应考虑事故排风措施。事故排风机的开关应装在门口便于操作的地点。
- 9.3.2.10 脱硫岛配装置室发生火灾时,应能自动切断通风机的电源。

#### 9.3.3 消防系统

- 9.3.3.1 脱硫岛消防水源宜由电厂主消防管网供给。消防水系统的设置应覆盖所有室外、室内建构筑物和相关设备。
- 9.3.3.2 室内消防栓的布置,应保证有两支水枪的充实水柱同时到达室内任何部位。脱硫岛建筑物室内消火栓的间距不应超过50 m。
- 9.3.3.3 室外消火栓应根据需要沿道路设置,并宜靠近路口,在建筑物外不应大于120 m,室外消火栓的保护半径不应大于150 m,若电厂主消防系统在脱硫岛附近设有室外消火栓,可考虑利用其保护范围,相应减少脱硫岛室外消火栓的数量。
- 9.3.3.4 在脱硫岛区域内的建筑物,主要包括电子设备间、控制室、电缆夹层、电力设备附近等处按照GBJ140规定配置一定数量的移动式灭火器。

#### 9.4 厂区道路

- 9.4.1 脱硫岛内道路的设计,应保证脱硫岛的物料运输便捷,消防通道畅通,检修方便,并满足场地排水的要求。
- 9.4.2 脱硫岛内的道路应与厂内道路形成路网。并根据生产、生活、消防和检修的需要设置行车道路、消防车通道和人行道。
- 9.4.3 脱硫岛内装置密集区域的道路宜采用混凝土块铺砌等硬化方式处理,以便于检修及清扫。

#### 10 劳动安全与职业卫生

#### 10.1 一般规定

- **10.1.1** 在脱硫装置建设、运行过程中产生烟气、废水、废渣、噪声及其它污染物的防治与排放,应贯彻执行国家现行的环境保护法规和标准的有关规定。
- **10**. **1**. **2** 脱硫岛在设计、建设和运行过程中,应高度重视劳动安全和工业卫生,采取各种防治措施,保护人身的安全和健康。
- 10.1.3 脱硫岛的安全管理应符合GB12801中的有关规定。
- **10.1.4** 脱硫岛可行性研究阶段应有环境保护、劳动安全和工业卫生的论证内容。在初步设计阶段,应提出深度符合要求的环境保护、劳动安全和工业卫生专篇。
- **10**. 1. 5 建设单位在脱硫岛建成运行的同时,安全和卫生设施应同时建成运行,并制订相应的操作规程。

#### 10.2 劳动安全

10.2.1 脱硫岛的建设应遵守DL5009.1 和DL5053 及其他有关规定,及时消除事故隐患,防止事故发

生。

10. 2. 2 脱硫岛的防火、防爆设计应符合GB50016、GB50222 和GB50229 等有关规范的规定。

#### 10.3 职业卫生

- 10.3.1 脱硫岛室内防尘、防噪声与振动、防电磁辐射、防暑与防寒等职业卫生要求应符合GBZ 1的规定。
- 10.3.2 在易发生粉尘飞扬或洒落的区域设置必要的除尘设备或清扫措施。
- 10.3.3 应尽可能采用噪声低的设备,对于噪声较高的设备,应采取减震消声措施,尽量将噪声源和操作人员隔开。工艺允许远距离控制的,可设置隔声操作(控制)室。

#### 11 工程施工与验收

#### 11.1 工程施工

- 11.1.1 脱硫工程设计、施工单位应具有国家相应的工程设计、施工资质。
- 11.1.2 脱硫工程的施工应符合国家和行业施工程序及管理文件的要求。
- **11.1.3** 脱硫工程应按设计文件进行建设,对工程的变更应取得设计单位的设计变更文件后再进行施工。
- **11.1.4** 脱硫工程施工中使用的设备、材料、器件等应符合相关的国家标准,并应取得供货商的产品合格证后方可使用。
- **11.1.5** 施工单位除遵守相关的施工技术规范以外,还应遵守国家有关部门颁布的劳动安全及卫生、消防等国家强制性标准。

#### 11.2 工程验收

#### 11.2.1 竣工验收

- **11.2.1.1** 脱硫工程验收应按《建设项目(工程)竣工验收办法》、相应专业现行验收规范和本规范的有关规定进行组织。工程竣工验收前,严禁投入生产性使用。
- **11.2.1.2** 脱硫工程验收应依据:主管部门的批准文件、批准的设计文件和设计变更文件、工程合同、设备供货合同和合同附件、设备技术说明书和技术文件、专项设备施工验收规范及其它文件。
- **11.2.1.3** 脱硫工程中选用国外引进的设备、材料、器件应按供货商提供的技术规范、合同规定及商 检文件执行,并应符合我国现行国家或行业标准的有关要求。
- **11.2.1.4** 工程施工完成后应按照DL/T 5436进行调试前的启动验收,启动验收合格和对在线仪表进行校验后方可进行分项调试和整体调试。
- 11.2.1.5 通过脱硫装置整体调试,各系统运转正常,技术指标达到设计和合同要求后,进行启动试

运行。

**11.2.1.6** 对整体启动试运行中出现的问题应及时消除。整体启动试运行连续试运**168** 小时,技术指标应达到设计和合同要求。

#### 11.2.2 环境保护验收

- 11.2.2.1 脱硫装置竣工环境保护验收按《建设项目竣工环境保护验收管理办法》的规定进行。
- 12 运行与维护

#### 12.1 一般规定

- **12.1.1** 脱硫装置的运行、维护及安全管理除应执行本规范外,还应符合国家现行有关强制性标准的规定。
- **12.1.2** 脱硫装置运行应在满足设计工况的条件下进行,并根据工艺要求,定期对各类设备、电气、自控仪表及建(构)筑物进行检查维护,确保装置长期稳定可靠地运行。
- 12.1.3 脱硫装置不宜在超过设计负荷 120%的条件下长期运行。
- 12.1.4 电厂应建立健全与脱硫装置运行维护相关的各项管理制度,以及运行、检修规程。

#### 12.2 人员与运行管理

- **12.2.1** 根据电厂管理模式特点,对脱硫装置的运行管理既可成为独立的脱硫车间也可纳入锅炉或除灰车间的管理范畴。
- 12.2.2 电厂应对脱硫装置的管理和运行人员进行定期培训,使管理和运行人员系统掌握脱硫设备及其它附属设施正常运行的具体操作和应急情况的处理措施。运行操作人员,上岗前还应进行以下内容的专业培训:
  - (1) 启动前的检查和启动要求的条件;
  - (2) 处置设备的正常运行,包括设备的启动和停运;
  - (3) 控制、报警和指示系统的运行和检查,以及必要时的纠正操作;
- (4)掌握选择最佳的运行方式,控制和调节脱硫效率、排放海水的 pH 值、排放海水溶氧值(D0),以及保持设备良好运行的条件;
  - (5) 设备运行故障的发现、检查和排除;
  - (6) 事故或紧急状态下人工操作和事故处理;
  - (7) 设备日常和定期维护及切换;
  - (8) 设备运行及维护记录,以及其他事件的记录和报告。
- 12.2.3 电厂应建立脱硫装置运行状况、设施维护和生产活动等的记录制度,主要记录内容包括:
  - (1) 系统启动、停止时间;

- (2) 设备切换时间、内容,及完成情况;
- (3) 系统运行工艺控制参数记录,至少应包括: 吸收塔出口烟气温度、吸收塔入口烟气温度、净烟气流量、原烟气压力、净烟气压力、吸收塔差压、GGH 压差(设有 GGH 时)、吸收塔水位、吸收塔海水流量、吸收塔出口 SO<sub>2</sub>浓度、吸收塔入口 SO<sub>2</sub>浓度、净烟气粉尘浓度、排放海水 pH 值、排放海水温度、排放海水溶氧值等;
  - (4) 主要设备的运行和维修情况记录。
  - (5) 烟气连续监测数据、海水排放指标的记录;
  - (6) 生产事故及处置情况的记录:
  - (7) 定期检测、评价及评估情况的记录等。
- 12.2.4 运行人员应按照电厂规定坚持做好交接班制度和巡视制度。

#### 12.3 运行维护

- 12.3.1 脱硫装置的维护保养应纳入全厂的维护保养计划中。
- 12.3.2 电厂应根据脱硫装置技术负责方提供的系统、设备等资料制定详细的维护保养规定。
- 12.3.3 维修人员应根据维护保养规定定期检查、更换或维修必要的部件。
- 12.3.4 维修人员应做好维护保养记录。

#### 附录A

#### (规范性附录)

#### 防腐材料的选择

#### 表A. 1 镍基不锈钢适用介质条件

| 序号 | 材料成分                 | 适用介质                             | 备注                     |
|----|----------------------|----------------------------------|------------------------|
| 1  | 铁一镍一铬合金              | 净烟气、低温原烟气                        |                        |
| 2  | 铁一镍一铬合金<br>铁一钼一镍一铬合金 | pH 为3~6,氯离子浓度≤<br>60000 mg/L 的溶液 | 两者使用条件有差异,实际选<br>用时应注意 |

#### 表A. 2 主要非金属材料及使用部位

| 序号 | 材料名称   | 材料主要成分                                 | 使用部位              |
|----|--------|----------------------------------------|-------------------|
| 1  | 玻璃鳞片树脂 | 玻璃鳞片<br>乙烯基酯树脂<br>酚醛树脂<br>呋喃树脂<br>环氧树脂 | 净烟气、低温原烟气段、吸收塔等内衬 |
| 2  | 玻璃钢    | 玻璃鳞片、玻璃纤维<br>乙烯基酯树脂<br>酚醛树脂            | 吸收塔喷淋层、海水管道、箱罐    |
| 3  | 塑料     | 聚丙烯等                                   | 管道、除雾器            |
| 4  | 橡胶     | 氯化丁基橡胶<br>氯丁橡胶<br>丁苯橡胶                 | 吸收塔、箱罐、海水管道       |
| 5  | 陶瓷     | 碳化硅                                    | 喷嘴                |

#### 表A. 3 玻璃鳞片树脂主要性能表

| 序号 | 项目                        | 乙烯基酯树脂     | 酚醛乙烯基酯树脂   |
|----|---------------------------|------------|------------|
| 1  | 拉伸强度 (MPa)                | > 25       | > 25       |
| 2  | 延伸率(%)                    | > 0.5      | > 0.5      |
| 3  | 巴氏硬度                      | > 35       | > 35       |
| 4  | 粘接强度(MPa)                 | > 10       | > 10       |
| 5  | 使用温度(℃)                   | < 100      | < 160      |
| 6  | 水汽渗透率(g·cm/(24h·m²·mmHg)) | < 0.000038 | < 0.000038 |

表A. 4 丁基橡胶主要性能表

| 序号 | 项目         | 性能    |
|----|------------|-------|
| 1  | 拉伸强度 (MPa) | > 2.5 |
| 2  | 延伸率(%)     | < 300 |
| 3  | 邵氏硬度       | > 50  |
| 4  | 粘接强度(N/mm) | > 30  |
| 5  | 使用温度(℃)    | < 90  |