# 具有 CO<sub>2</sub> 负排放的风电高温储能系统模拟

周 驰,向文国,陈时熠,徐游波

(能源热转换及其过程测控教育部重点实验室(东南大学),江苏省南京市 210096)

摘要:风能的反调峰特性使得弃风现象较为严重。针对该情况,提出了 CaO 高温储能耦合生物质 发电厂消纳风电的方法,有望实现风电的规模化储存和 CO<sub>2</sub> 负排放,并构建了 CaO 储能耦合生物 质发电并捕集 CO<sub>2</sub> 的系统模型;此外,基于 Aspen Plus 软件平台对系统的热力性能进行了模拟, 分析了碳酸化炉接入位置对系统储电效率和 CO<sub>2</sub> 捕集量的影响。同时,结合对碳酸化炉和 CaCO<sub>3</sub> 煅烧炉的灵敏度分析,得到了最佳工作条件下的集成系统储电效率和消纳单位风电的 CO<sub>2</sub> 捕 集量。

关键词:风电消纳;CaO储能;生物质发电厂;CO2排放

# 0 引言

能源利用和环境保护是实现中国可持续发展战 略的重点[1]。目前,中国的电力供应仍以燃煤发电 为主。煤炭作为不可再生能源,在当前的消耗速度 下仅能持续供应 115 年<sup>[2]</sup>。此外,燃煤排放的 CO<sub>2</sub> 等温室气体也给环境带来了较大威胁。因此,大力 寻求和发展清洁、可再生能源发电技术是实现电力 行业健康、稳定发展的重要保证。风能是一种资源 丰富、洁净的可再生能源,风力发电是目前新能源发 电技术中最成熟、最具规模化的发电方式之一。中 国风能资源丰富,陆上和近海区域 50 m 高度可开 发利用的风能储量约为2580GW,风电发展具有良 好的资源条件[3]。但由于风电具有随机性、间歇性 及反调峰性的特点,在夜间用电负荷低谷时段,弃风 现象比较突出,造成风能资源的浪费,因此需有可行 的解决方案消纳弃风,促进风电的大规模发展。目 前,解决上述问题的主要技术途径是将风电与大规 模储能技术相结合,如抽水蓄能电站和压缩空气储 能。抽水蓄能电站作为一种目前使用较为广泛的大 规模电力储能系统,具有技术成熟、效率高、容量大、 储能周期长等优点,但其选址困难,建设周期很 长[4];压缩空气储能技术[5-8]则具有容量大、运行周 期长、成本相对较低的优点,但传统的压缩空气储能 依赖燃烧化石燃料额外充能,不符合绿色排放要求, 且大型压缩空气储能系统需要特定的地理条件建造 储气室,限制了该技术的应用。

收稿日期: 2015-03-29; 修回日期: 2015-07-07。

因此,解决弃风问题的关键是要找到高性价比的储能介质,以实现风电能量的大规模储存与输出。 石灰石成本低廉,且能通过 CaO-CaCO<sub>3</sub> 的循环将 风电系统与常规生物质燃烧发电系统结合,实现风 能的高品位储存与输出。随着温室效应的加剧,被 认为是"CO<sub>2</sub> 零排放"的生物质燃料日益受到关 注<sup>[9]</sup>。作为一个农业大国,中国的生物质资源十分 丰富,可大力发展生物质发电<sup>[10-11]</sup>,并对生物质燃烧 发电产生的 CO<sub>2</sub> 进行捕集封存,从而实现 CO<sub>2</sub> 的 负排放。

为此,本文提出将风电系统、生物质燃烧发电系统以及 CaO-CaCO<sub>3</sub> 循环系统相结合,通过在风电场与生物质发电厂之间架设专有线路,实现风电消纳系统与常规生物质燃烧发电系统间的结合。在夜间用电负荷低谷时段,利用风电煅烧 CaCO<sub>3</sub> 生成高温 CaO 和高温 CO<sub>2</sub> 实现风能的高品位储存,对高温 CO<sub>2</sub> 进行余热利用后压缩封存,实现 CO<sub>2</sub> 的负排放;而在白天用电负荷高峰时段则将高温 CaO 投入生物质燃烧发电系统,吸收烟气中的 CO<sub>2</sub>,将反应释放的高品位热能转化成电能增加发电量,以这种系统联合的形式实现弃风消纳、增加生物质发电量和确保 CO<sub>2</sub> 负排放的目的。

# 1 系统流程与参数设计

本文设计的基于 CaO 高温储能耦合生物质燃 烧发电的 CO<sub>2</sub> 负排放系统包括以下 3 个部分:生物 质燃烧发电系统、风电消纳系统和 CO<sub>2</sub> 捕集封存系 统。系统结构如图 1 所示。



图 1 基于 CaO 高温储能耦合生物质燃烧发电的 CO<sub>2</sub> 负排放系统 Fig.1 Integration of biomass combustion power generation and CaO heat storage for wind power disposal and CO<sub>2</sub> negative emission

#### 1.1 生物质燃烧发电系统

生物质燃烧发电系统在已有的 30 MW 生物质 直燃电厂<sup>[12]</sup>基础上增加了碳酸化炉和旋风分离器, 本文的生物质直燃电厂采用 M 型布置的高温高压 蒸汽锅炉,其结构如图 2 所示。图中,烟气从炉膛依 次经过三级过热器、四级过热器、二级过热器、一级 过热器,这 4 级过热器的布置对应于图 1 中的过热 器受热面。在白天用电负荷高峰时段,将碳酸化炉 和旋风分离器与过热器受热面串接,根据不同的串 接位置有 3 种方案。方案 1:碳酸化炉和旋风分离 器串接在四级过热器和二级过热器之间。方案 2: 碳酸化炉和旋风分离器串接在二级过热器和一级过 热器之间。方案 3:碳酸化炉和旋风分离器串接在 一级过热器和省煤器之间。在夜间用电负荷低谷时 段则将碳酸化炉和旋风分离器旁路。



图 2 生物质直燃电厂结构 Fig.2 Structure of biomass-fired power plant

选取白天用电负荷高峰时段来介绍生物质发电流程。以方案1为例,选用取自徐州地区的生物质燃料,其低位热值为14.47 MJ/kg。将生物质燃料

投入生物质燃烧炉,生物质燃料在炉内发生高温分 解并与已预热的空气混合燃烧,炉膛出口烟气温度 达 900~1 000 ℃,高温烟气经过三级、四级过热器 导入至碳酸化炉中,与高温 CaO 发生反应并放出热 量,如式(1)所示:

$$\begin{cases} CaO + CO_2 \rightarrow CaCO_3 \\ \Delta H = -178 \text{ kJ/mol} \end{cases}$$
(1)

## 式中: *ΔH* 为反应放热量。

其中,高温 CaO 由 CaO 储罐进入碳酸化炉中。 碳酸化炉温度设置为 650~750 ℃,在该温度范围内 CaO 与 CO₂ 有较好的反应特性,但由于碳酸化炉中 的反应处于无水状态,干法脱硫脱硝的效果有限,因 此产生的 CaCO₃ 纯度很高。反应放出的热量被蒸 汽吸收,反应产物经旋风分离器脱除掉其中的固体 CaCO₃。最后,除去 CaCO₃ 后的烟气依次流过二级 过热器、一级过热器、省煤器、空气预热器等受热面, 经除尘后被排放。

#### 1.2 风电消纳系统

经旋风分离器分离出的固体 CaCO<sub>3</sub> 储存于 CaCO<sub>3</sub> 储罐中,到夜间用电负荷低谷时段投入到 CaCO<sub>3</sub> 煅烧炉中煅烧,在 850 ℃以上,CaCO<sub>3</sub> 煅烧 吸热分解为 CaO 和 CO<sub>2</sub>,反应如式(2)所示<sup>[13]</sup>:

$$\begin{cases} CaCO_3 \rightarrow CaO + CO_2 \\ \Delta H = 178 \text{ kJ/mol} \end{cases}$$
(2)

CaCO<sub>3</sub> 煅烧所需的热量由风电电加热提供,煅 烧炉的温度达 900~1 000 ℃,电热转化效率为 92%。煅烧产生高温 CaO 和高温 CO<sub>2</sub>,经分离后高 温 CaO 送入 CaO 储罐中储存,高温 CO<sub>2</sub> 则送入 CO<sub>2</sub> 捕集封存系统。

## 1.3 CO<sub>2</sub> 捕集封存系统

CaCO<sub>3</sub> 煅烧炉分离出的 CO<sub>2</sub> 温度为 900 ~ 1 000 ℃,进入余热锅炉中加热给水,产生蒸汽推动 汽轮机做功,假定这部分余热的利用效率为 90%, 余热的热功转化效率与主机相同。余热利用后的 CO<sub>2</sub> 通过多级中间水冷式压缩机被压缩至 12 MPa/35 ℃储存,其中,单级压缩机压比为 3,压 缩效率为 80%。

# 2 系统评估

原生物质直燃电厂机组的发电效率为:

$$\eta_{\rm n} = \frac{W_{\rm n}}{m_{\rm biomass} A_{\rm LHV, biomass}} \tag{3}$$

式中:W<sub>n</sub>为碳酸化炉和旋风分离器旁路时的原机 组发电功率;m<sub>biomass</sub>为投入的生物质燃料的总质量 流量;A<sub>LHV,biomass</sub>为生物质燃料的低位热值。

将消纳风电和 CO<sub>2</sub> 捕集封存系统集成到原生物质直燃电厂机组中,根据实际情况设定每天平均 消纳弃风时间,则该集成系统的日平均发电效率为:

$$\eta_{\rm c} = \frac{G_{\rm sys}}{tm_{\rm biomass}A_{\rm LHV, biomass}} \tag{4}$$

$$G_{\text{sys}} = t_{d} W_{d} + t_{n} (W_{n} + W_{\text{CO}_{2}} - W_{\text{comp}}) + (t - t_{d} - t_{n}) W_{n}$$
(5)

式中:t 为单日时长,即 24 h; $G_{sys}$ 为该集成系统的日 平均发电量; $W_d$  和  $t_d$  分别为原生物质直燃电厂接 入碳酸化炉和旋风分离器后的改进机组发电功率和 运行时间; $t_n$  为消纳弃风的时间; $W_{CO_2}$  为高温 CO<sub>2</sub> 余热做功; $W_{comp}$ 为储存 CO<sub>2</sub> 所消耗的压缩功。

CaO 高温储热消纳弃风的储电效率定义为消 纳单位风电使改进机组增加的发电量,如式(6)所示:

$$\eta_{\rm e} = \frac{\Delta G_{\rm e}}{G_{\rm wind}} \tag{6}$$

 $\Delta G_{\rm e} = t_{\rm d} (W_{\rm d} - W_{\rm n}) \tag{7}$ 

式中:G<sub>wind</sub>为1d内消纳的风电量;ΔG。为改进机组 较原生物质直燃电厂机组每日增加发电量。 以集成系统消纳单位风电(1 kW・h)捕集的 CO<sub>2</sub>量C<sub>CO2</sub>来表征集成系统的CO<sub>2</sub>捕集能力:

$$C_{\rm CO_2} = \frac{m_{\rm CO_2} t_{\rm n}}{G_{\rm wind}} \tag{8}$$

式中:m CO2 为每小时内捕集的 CO2 量。

# 3 系统模拟与分析

#### 3.1 系统模拟

在 Aspen Plus 软件中,搭建好完整的系统模型 并对其进行模拟,模拟是基于稳态及热力学平衡状 态进行的,系统主要模块和物性的参数设定见表 1。 物性参数选取 Combust, Queous, Inorganic, Solids 等数据库类型,物流特性根据 PR-BM 状态方程得 到,并按照美国机械工程师学会(ASME)标准修正 汽水物流的参数。对于碳酸化炉、生物质燃烧以及 CaCO。煅烧均采用 RGibbs 模型进行计算,该模型 基于吉布斯自由能最小原则,可以用于计算任意配 比下反应物转化为生成物的平衡方程。对于生物质 的高温分解,选用 RYield 模型进行计算,该模型适 用于化学反应式和各产物间的相对产率已知,而化 学计量关系未知的情况。

表 1 系统主要模块的物性参数 Table 1 Physical parameters of main system modules

| 模块                    | 温度/℃           | 压力/MPa  |
|-----------------------|----------------|---------|
| 生物质燃烧炉                | 950            | 0.101 3 |
| 碳酸化炉                  | $650 \sim 720$ | 0.101 3 |
| CaCO <sub>3</sub> 煅烧炉 | $900 \sim 950$ | 0.101 3 |
| 主蒸汽                   | 540            | 9.900 0 |

根据风电及用电负荷的规律,假设消纳弃风的时间是当晚22:00 至次日06:00,共8h<sup>[14]</sup>;白天用电负荷高峰时段,即加入碳酸化炉设备的工作时间也为8h。选取生物质燃料的质量流量为1kg/s,CaO的质量流量为0.58 kg/s,对上述3种方案所对应的系统进行模拟。根据模拟结果采集数据并按系统评价指标测算系统性能,结果如表2所示。

表 2 系统性能参数 Table 2 System performance parameters

|      |                  |                     |                    |                                   |                 | -                     | -                 | =                      |                                               |                   |                   |                |                                                     |
|------|------------------|---------------------|--------------------|-----------------------------------|-----------------|-----------------------|-------------------|------------------------|-----------------------------------------------|-------------------|-------------------|----------------|-----------------------------------------------------|
| 方案   | 碳酸化<br>炉温<br>度/℃ | 改进机<br>组发电功<br>率/kW | 原机组发<br>电功率/<br>kW | CO <sub>2</sub> 余<br>热做功<br>功率/kW | 压缩<br>功率/<br>kW | 日平均发<br>电量/<br>(MW・h) | 消纳风<br>电功率/<br>kW | 毎日増加<br>发电量/<br>(MW・h) | CO <sub>2</sub> 捕集量/<br>(kg・h <sup>-1</sup> ) | 原机组<br>发电效<br>率/% | 日平均<br>发电效<br>率/% | 储电<br>效率/<br>% | C <sub>CO2</sub> /(kg •<br>(kW • h) <sup>-1</sup> ) |
| 方案1  | 700              | 4 670.2             | 3 929              | 244.79                            | 478.11          | 98.359                | 2 000             | 5.929 6                | 1 573.89                                      | 27.15             | 28.32             | 37.06          | 0.787                                               |
| 方案 2 | 670              | 4 717.1             | 3 929              | 246.53                            | 482.12          | 98.715                | 2 000             | 6.304 2                | 1 584.22                                      | 27.15             | 28.43             | 39.40          | 0.792                                               |
| 方案 3 | 650              | 4 609.6             | 3 929              | 249.69                            | 492.38          | 97.799                | 2 000             | 5.444 8                | 1 596.12                                      | 27.15             | 28.16             | 34.03          | 0.798                                               |

# 3.2 系统性能分析

方案1至方案3可改变碳酸化炉和旋风分离器 的串接位置,相应的系统性能参数如表2所示。分 析表2可知,集成系统储电效率最高的是方案2,为 39.40%,较集成系统储电效率次之的方案1高 2.34%。方案2中碳酸化炉和旋风分离器串接在二 级过热器和一级过热器之间,与方案1相比,碳酸化 炉的温度低30℃,减少了从旋风分离器分离出的固 体CaO和CaCO。带走的热量,因此,方案2的集成 系统储电效率较方案1高,风电利用更为充分。方 案3集成系统储电效率最低,为34.03%,由于其碳 酸化炉和旋风分离器串接在低温受热面之间,相应 的系统排烟温度达191℃,排烟热损失较大。

从表 2 也可以看出,方案 1 至方案 3 中集成系 统的 CO<sub>2</sub> 捕集量  $C_{CO_2}$ 呈增大的趋势,碳酸化炉的温 度越低,集成系统的 CO<sub>2</sub> 捕集量越大。方案 3 的碳 酸化炉 温度 最低,为 650 ℃,其对应的  $C_{CO_2}$ 达 0.798 kg/(kW • h),比  $C_{CO_2}$ 最小的方案 1 高 0.011 kg/(kW • h),可看出 3 种方案对应的  $C_{CO_2}$ 相 差很小。

采用集成系统发电将弃风转化为有效电能,集 成系统的日平均发电效率最高可达到28.43%,较原 生物质直燃电厂机组的发电效率高1.28%。计算结 果显示,3种方案对应的集成系统的CO2 捕集量相 差很小。因此,从能量有效利用的角度考虑,方案2 的集成系统储电效率最高,风能利用最有效,其碳酸 化炉和旋风分离器的串接方式最优。

#### 3.3 系统经济性分析

由于生物质燃烧发电系统基于已有的 30 MW 生物质直燃电厂建立<sup>[13]</sup>,因此实际每日增加发电量  $\Delta G_{\text{entral}}满足式(10):$ 

$$\Delta G_{\text{e-total}} = \frac{30\ 000}{W_{\text{n}}} \Delta G_{\text{e}} \tag{10}$$

3 种方案的初期投资包括碳酸化炉、旋风分离器、风电消纳系统以及 CO<sub>2</sub> 捕集封存系统等的设备费用、施工费、设计费,且设备接入位置的温度越高,设备成本越高。年直接收益按年发电 6 000 h,上网电价 0.5 元/(kW • h)计算,计算结果如表 3 所示。

表 3 系统经济性参数 Table 3 System economic parameters

| 方案   | 碳酸化炉、旋风分离器、风<br>电消纳系统设备费用/万元 | CO <sub>2</sub> 捕集封存系<br>统设备费用/万元 | 总设备费<br>用/万元 | 施工费/<br>万元 | 设计费/<br>万元 | 总投资/<br>万元 | $\Delta G_{e-total}/(MW \cdot h)$ | 年直接收<br>益/万元 | 静态投资<br>回收期/月 |
|------|------------------------------|-----------------------------------|--------------|------------|------------|------------|-----------------------------------|--------------|---------------|
| 方案1  | 350                          | 300                               | 650          | 80         | 50         | 780        | 45.276                            | 565.9        | 16.6          |
| 方案 2 | 320                          | 300                               | 620          | 80         | 50         | 750        | 48.136                            | 601.7        | 15.0          |
| 方案 3 | 280                          | 300                               | 580          | 80         | 50         | 710        | 41.574                            | 519.7        | 16.4          |

由表 3 可知,3 种方案对应的静态投资回收期 为 15.0~16.6 个月,相差较小,但方案 2 的年直接收 益高于方案 1 和方案 3。因此,从系统长时间运行 角度考虑,方案 2 的经济性最优。

# 4 灵敏度分析

灵敏度分析可以用来检验关键设计变量变化对 系统性能的影响,加深对整个系统的理解。本文所 述集成系统的关键连接设备包括碳酸化炉和 CaCO3 煅烧炉,因此,有必要对这2个设备进行灵 敏度分析<sup>[15-16]</sup>。以方案2为例,分析碳酸化炉和 CaCO3 煅烧炉的工作温度对集成系统的储电效率 及 CO2 捕集能力的影响。

#### 4.1 碳酸化炉温度

碳酸化炉温度与集成系统储电效率和 CO₂ 捕 集能力的变化关系如图 3 所示。随着碳酸化炉温度 的减小,集成系统储电效率逐渐增大,在 670 ℃时集 成系统储电效率达到最大。由于原生物质直燃电厂 机 组中二级过热器出口的烟气温度达到650℃,加



储电效率及 CO<sub>2</sub> 捕集量的影响 Fig.3 Influences of carbonation reactor temperature on integrated energy storage efficiency and CO<sub>2</sub> capture

入的高温 CaO 与 CO<sub>2</sub> 反应会放出热量进一步加热 烟气至 670 ℃以上。CaO 和 CO<sub>2</sub> 反应生成的 CaCO<sub>3</sub> 会覆盖在 CaO 表面,增大 CO<sub>2</sub> 的扩散阻 力<sup>[17-18]</sup>,使得碳酸化反应速度越来越慢,阻止 CaO 完全转化成 CaCO<sub>3</sub><sup>[19]</sup>,且两者反应会放热,温度越 高,CaO 吸收 CO<sub>2</sub> 的效率越低<sup>[20-21]</sup>。因此,集成系 统的 CO<sub>2</sub> 捕集量随碳酸化炉的温度升高而减小;同 时,碳酸化炉的温度越高,分离出的固体的温度越高,排烟热损失越大,使集成系统的整体热损失增大,集成系统储电效率降低。

综上所述,本案例中碳酸化炉温度为670℃时, 其对应的集成系统的储电效率和CO₂捕集量均为 最优。

#### 4.2 CaCO3 煅烧炉温度

CaCO<sub>3</sub> 煅烧炉内的温度变化对集成系统储电 效率及 CO<sub>2</sub> 捕集能力的影响如图 4 所示。

由图 4 可知,随着温度的升高,集成系统储电效 率稍有增加而 CO<sub>2</sub> 捕集量不变,这是由于在煅烧炉 内发生的 CaCO<sub>3</sub> 分解是吸热反应,温度增加会加快 CaCO<sub>3</sub> 分解<sup>[22]</sup>并提高 CO<sub>2</sub> 的余热利用量,增加了 所消纳风电的有效利用量,提高了集成系统储电效 率。由于分解的 CaCO<sub>3</sub> 固体量是一定的,因而对 CO<sub>2</sub> 捕集量并无影响。考虑到 CaCO<sub>3</sub> 煅烧炉温度 对集成系统储电效率的影响,本案例中选择 CaCO<sub>3</sub> 煅烧炉的工作温度为 950 ℃较为合适。



图 4 CaCO<sub>3</sub> 煅烧炉温度变化对集成系统 储电效率及 CO<sub>2</sub> 捕集量的影响 Fig.4 Influence of calcinations reactor temperature

on integrated energy storage efficiency and CO<sub>2</sub> capture

#### 5 结论

本文基于生物质直燃电厂设计了用于风电消纳 及实现 CO<sub>2</sub> 负排放的集成发电系统,并利用 Aspen Plus 软件对系统进行模拟,根据模拟所得的数据对 系统进行综合评估,得出如下结论。

1)利用 CaO 和 CaCO<sub>3</sub> 的循环实现了对弃风的 消纳,将夜间弃风风能储存于高温 CaO 中,白天再 将该高品位储能转化成电能输出,合理有效地提高 了能源利用率。

2)通过各方案的比较,将碳酸化炉和旋风分离 器串接在二级过热器和一级过热器之间,其集成系 统储电效率最高。

3)文中设计的集成系统可实现对燃料燃烧排放的 CO<sub>2</sub> 的 捕集, 消纳 单位风电的 CO<sub>2</sub> 捕集量达

0.792 kg/(kW • h),实现了储能过程的 CO<sub>2</sub> 负排 放。

当然,本文也有一定的局限性,如文中的生物质 直燃电厂负荷较小,其发电效率仅为27.15%,较大 程度地限制了系统储电效率。因此,如何提高其发 电效率,将为下一步研究方向。

# 参考文献

[1] 刘明.关于我国能源利用与环境保护的现状分析[J].山西能源与 节能,2002(3):17-18.

LIU Ming. Analysis on the current situation of energy utilization and environment protection in China [J]. Shanxi Energy and Conservation, 2002(3): 17-18.

- [2] World Coal Institute [EB/OL]. [2015-03-29]. http://www.worldcoal.org.
- [3] 朱凌志,陈宁,韩华玲.风电消纳关键问题及应对措施分析[J].电 力系统自动化,2011,35(22):29-34.
  ZHU Lingzhi, CHEN Ning, HAN Hualing. Key problems and solutions of wind power accommodation [J]. Automation of Electric Power Systems, 2011, 35(22): 29-34.
- [4] LUND P D, PAATERO J V. Energy storage options for improving wind power quality [C]// Proceedings of the 3rd Nordic Wind Power Conference, May 22-23, 2006, Espoo, Finland: 5p.
- [5] AYODELE T R, OGUNJUYIGBE A S O. Mitigation of wind power intermittency: storage technology approach [ J ]. Renewable and Sustainable Energy Reviews, 2015(44): 447-456.
- [6] DÍAZ-GONZÍLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2154-2171.
- [7] 徐玉杰,陈海生,刘佳,等.风光互补的压缩空气储能与发电一体 化系统特性分析[J].中国电机工程学报,2012,32(20):88-95.
  XU Yujie, CHEN Haisheng, LIU Jia, et al. Performance analysis on an integrated system of compressed air energy storage and electricity production with wind-solar complementary method[J]. Proceedings of the CSEE, 2012, 32(20): 88-95.
- [8] 陈海生.压缩空气储能技术的特点与发展趋势[J].高科技与产业化,2011(6):55-56.
  CHEN Haisheng. Characteristics and development trend of compressed air energy storage technology[J]. High-technology & Industrialization, 2011(6): 55-56.
- [9] 王学斌.生物质燃烧及其还原氮氧化物的机理研究及应用[D]. 西安:西安交通大学,2011.
- [10] 沈明忠,王新雷.我国生物质发电的发展环境分析[J].能源技术 经济,2011,23(1):41-45.
   SHEN Mingzhong, WANG Xinlei. Study on environment for biomass power generation development in China[J]. Energy

120

Technology and Economics, 2011, 23(1): 41-45.

- [11] 边光辉.我国生物质发电企业发展战略研究[D].北京:北京交 通大学,2012.
- [12] 王焱.生物质直燃锅炉运行与控制的研究[D].济南:山东大学, 2009.
- [13] 张学镭,陈海平.供能方式对钙基吸收剂循环煅烧/碳酸化法捕集 CO<sub>2</sub> 热力性能的影响[J].中国电机工程学报,2013,33(29):
   49-56.

ZHANG Xuelei, CHEN Haiping. Influence of energy supply mode on thermodynamic performance of  $CO_2$  capture systems with Ca-based sorbent cyclic calcination/carbonation reaction [J]. Proceedings of the CSEE, 2013, 33(29): 49-56.

[14] 王彩霞,李琼慧,谢国辉.风电供热提高低谷风电消纳能力评估 [J].中国电力,2013,46(12):100-106.

WANG Caixia, LI Qionghui, XIE Guohui. Evaluation of wind power heating in facilitating wind power integration capability during valley load period[J]. Electric Power, 2013, 46(12): 100-106.

- [15] 孙兰义.化工流程模拟实训—Aspen Plus 教程[M].北京:化学 工业出版社,2012:163-166.
- [16] CHEN S, XIANG W, WANG D, et al. Incorporating IGCC and CaO sorption-enhanced process for power generation with CO<sub>2</sub> capture[J]. Applied Energy, 2012, 95(2): 285-294.
- [17] BARKER R. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage[J]. Journal of Applied Chemistry and Biotechnology, 1974, 24(4): 221-227.
- [18] BHATIA S K, PERLMUTTER D D. Effect of the product layer on the kinetics of the CO<sub>2</sub>-lime reaction [J]. Aiche Journal, 1983, 29(1): 79-86.

- [19] DEAN C C, BLAMEY J, FLORIN N H, et al. The calcium looping cycle for CO<sub>2</sub> capture from power generation, cement manufacture and hydrogen production [ J ]. Chemical Engineering Research and Design, 2011, 89(6): 836-855.
- [20] 李英杰,赵长遂.钙基吸收剂循环锻烧/碳酸化反应过程特性研究[J].中国电机工程学报,2008,28(2):55-60.
  LI Yingjie, ZHAO Changsui. Carbonation characteristics in calcium-sorbents cyclic calcination/carbonation reaction process
  [J]. Proceedings of the CSEE, 2008, 28(2): 55-60.
- [21] WANG W, RAMKUMAR S, FAN L S. Energy penalty of CO<sub>2</sub> capture for the carbonation-calcination reaction (CCR) process: parametric effects and comparisons with alternative processes[J]. Fuel, 2013(104): 561-574.
- [22] 陈鸿伟,陈江涛,危日光,等.温度对 CaCO<sub>3</sub> 分解反应动力学参数的影响[J].热力发电,2013,42(6):21-25.
  CHEN Weihong, CHEN Jiangtao, WEI Riguang, et al. Effect of temperature on kinetic parameters of decomposition reaction of calcium carbonate[J]. Thermal Power Generation, 2013, 42(6): 21-25.

周 驰(1990—),男,硕士研究生,主要研究方向:热力 系统优化与控制。E-mail: zhouch54321@163.com

向文国(1964—),男,通信作者,博士生导师,主要研究 方向:洁净煤燃烧、热力系统优化与控制。E-mail: wgxiang @seu.edu.cn

陈时熠(1986—),男,博士研究生,主要研究方向:洁净 煤发电。E-mail: kerrylink@163.com

(编辑 钱梦骄)

# Simulation of High-temperature Energy Storage System for Wind Power Accommodation with CO<sub>2</sub> Negative Emissions

ZHOU Chi, XIANG Wenguo, CHEN Shiyi, XU Youbo

(Key Laboratory of Energy Thermal Conversion and Control of Ministry of

Education (Southeast University), Nanjing 210096, China)

**Abstract:** The reverse peak load characteristics of wind energy result in a large portion of the wind power wasted. In order to solve this problem, a novel biomass-fired power plant integrated by CaO energy storage under high temperature for wind power accommodation with  $CO_2$  negative emissions is proposed. A model based on CaO energy storage integrated biomass-fired power plants is built to simulate wind power accommodation and  $CO_2$  capture. The thermodynamic performances of the system are analyzed using Aspen Plus software and the influences of the carbonation reactor positions on the energy storage efficiency and the  $CO_2$  capture are also discussed. Meanwhile, combined with the sensitive analysis on carbonation reactor and calcinations reactor, the energy storage efficiency of the system is calculated to be 39.4% while the  $CO_2$  capture for wind power reaches 0.792 kg/(kW • h) under the optimal operation condition.

Key words: wind power accommodation; CaO energy storage; biomass-fired power plant; CO<sub>2</sub> emission