论共晶结构的机理

程开甲 程漱玉

(西北核技术研究所,陕西 西安 710024)

摘 要:本文是 Thomas-Fermi-Dirac-Cheng 电子理论对共晶机理的阐述。提出了薄膜两组元之间的化学势差和电子密度 差导致系统总能量改变的新思想 给出了研究稳定共晶态的最佳尺寸和能量的方法。

关键词:Thomas-Fermi-Dirac ;共晶 ;内应力 :化学势 ;电子密度

中图法分奕号:TG 113.1 又献标识码:A 又草编号:1002-185X(2002)06-04	1002-185X(2002)06-0403-03
---	---------------------------

1 简 介

共晶结构相图指出两组元相和合成相一起构成 共晶相。根据 Thomas-Fermi-Dirac-Cheng(TFDC) 电子 理论的间界面边界条件,除了3种相材料的化学势应 该相等,它们的电子密度也应该相等。以往的研究只 考虑了化学势的作用,而没有考虑电子密度要相等的 重要作用。

在三相材料边界上的表面能或表面张力影响的 近似下,以往的研究认为共晶结构的稳定性与晶粒尺 寸的大小是无关的,三相混合总是稳态。实际上两组 分之间的平衡是可能的,但因为合成相要比两个单相 的混合稳定,因此与合成相之间不能平衡。也就是说, 三相交界处各相的化学势差异很大,使两组分相的混 合与合成物相不能共存。为实现系统的稳定,晶粒只 有尽可能长大以求边界能极小。为此,本研究考虑了 更高一级近似——共晶三相界面能对自由能的贡献, 尽管差异不是很大,也足以影响合成相的形成。根 据分析,作者认为以下几个方面会对共晶结构产生 影响:

 1)针对不同的情况,合成相或者消失,或者孤立 地存在。后者只是一种普通的化学反应,本研究将只 讨论完全消失的情况。

 2)相接触小晶粒间电子密度的不同,在间界面 上产生应力并增加界面应力能,其作用范围为 1μm 左右。

3) 间界面两侧化学势的不同将使电子从界面一

侧迁移到另一侧,使系统总能减小。

4)上述应力能的增加与电子输运造成的能量减
 小之间的平衡决定了相邻晶粒的最佳尺寸。

5)相图的杠杆定律可决定两组元的构成比,但 不能决定各组元的实际尺度。系统能量的平衡则最 终导致一定厚度的两组元层相间堆叠,即共晶结构 形态。

本研究将利用自由能极小的方法来研究共晶结 构形成的机理。

2 共晶的相关系

图 1 为共晶体的自由能 *F* 与组分浓度 *C* 的关系。三相平衡的方程为:

$$\frac{\mathrm{d}F(\mathbf{c}_{i})}{\mathrm{d}c_{i}} = \frac{F(\mathbf{c}_{i}) - F(\mathbf{c}_{j})}{c_{i} - c_{i}}, \quad i = 1, 2, 3.....$$
(1)

图 1 共晶自由能与组分浓度的关系

上式表明三相点上化学势相等,即间界面上不存

收稿日期 2002-02-28

作黄節分0程开用in男 / 电黑科学院院本n. 距扎核技术研究师1 陕西19 年家1349241 电话1928-822269.4 http://www.cnki.net

在作用力,此时各种可能尺度的微小晶粒均可能存 在。各组元参量间遵从如下杠杆定律:

 $(c_i - c_j) M_i = (c_M - c_j) M_j$ (2)

式中 $M_i = F(c_i) - F(c_j)$, $M_j = F(c_M) - F(c_j)$, $c_M \in M$ 组分的浓度。

事实上,尽管自由能或化学势差都非常小,但前 所述,其影响仍存在,这将在3,4节中给予论述。

3 间界面上电子迁移造成的自由能变化

如图 2 所示,两种材料构成平面间界面,坐标系的原点设于间界面上。其中, n_1 , n_2 分别为两侧材料的 电子密度; μ_1 , μ_2 分别为间界面两侧材料的化学势; μ 为间界面两侧化学势差: $\mu = \mu_1 - \mu_2$ 。

由于间界面上存在的化学势差,电子从间界面 一侧迁移到另一侧,系统能量减小。在此假定两侧 均为金属,能量变化将利用 TFDC 电子理论计算分 析^[1,2]。

$$\varepsilon = \int \left[\frac{1}{2} A \eta^2 + \left(B + \frac{1}{2} eV - \mu \right) \eta \right] dx$$
(3)

$$\eta = n - n_0$$

$$\vec{z} \cdot \vec{\Box} : A = \frac{h^2}{3m} \left(\frac{3}{8\pi}\right)^{2/3} n_0^{-1/3} - \frac{1}{3} \left(\frac{3}{\pi}\right)^{2/3} e^2 n_0^{-2/3}$$
$$B = \frac{h^2}{2m} \left(\frac{3}{8\pi}\right)^{2/3} n_0^{2/3} - \left(\frac{3}{\pi}\right)^{1/3} e^2 n_0^{1/3}$$

 $x \ge 0, \ \mu = \mu; \ x \le 0, \ \mu = 0$

式中 eV(x)/2 中因子 1/2 是为了消除积分中重复两次计算所产生的影响 ,V(x)由下式给出:

$$\Delta V(x) = -4\pi \eta e$$

(4)

边界条件为:

$$x = 0 \qquad V(+0) = V(-0)$$
$$\frac{\mathrm{d}V}{\mathrm{d}x} (+0) = \frac{\mathrm{d}V}{\mathrm{d}x} (-0)$$

 $\eta(x)$ 由对方程(3)的变分和方程(4)决定。

$$A\eta + B + eV - \mu = 0$$

$$\eta = -\frac{1}{A}(B + eV - \mu)$$
(5)

$$\Delta \eta = \frac{4\pi e^2}{A}\eta$$

上述方程的解为:

$$\eta_{\pm} = \eta_0 \pm e^{\pm \frac{x}{x_0}}$$

$$\eta_{+0} = \frac{1}{\sqrt{A_{+}}} \frac{B_{-} - B_{+} + \mu}{\sqrt{A_{+}} + \sqrt{A_{-}}}$$

$$\eta_{-0} = \frac{-1}{\sqrt{A_{-}}} \frac{B_{-} - B_{+} + \mu}{\sqrt{A_{+}} + \sqrt{A_{-}}}$$

$$\vec{x} + , - \beta \exists \vec{y} \ \vec{x} = 1$$

$$\vec{x} > 0, \ \vec{x} < 0$$

$$\int \eta dx = 0$$

$$\vec{y} \ \vec{u} \ \vec{u}$$

由此可知,若化学势差和 $B_- - B_+$ 很小, ε 也很小。

4 界面上应力能的变化

文献[2]阐述了间界面两侧电子密度差导致了应力 $\sigma_{o} x > 0 - 0 m x$ 处产生的压力可近似写为:

 $\sigma = \sigma_0 e^{-x/D}$ x < L (8) 如图 2 所示 ,宽度为 *L* 的间界面两侧在 *x* 处产生的应 力和应为:

$$\sigma_{\rm s} = \sigma_0 \{ e^{-\frac{x}{D}} + e^{-\frac{L-x}{D}} \} \tag{9}$$

图 2 间界面示意

Fig. 2 Schematic diagram of the interface

在此,选用了幂指数来控制位错的作用范围。这 种处理是基于膜中应力在位错半径的距离以外很快 降低的事实[3],而幂指数在位错半径之外的作用很小。

考虑到应力能密度与应力的平方成比例,两相邻 间界面之间的总能量可由如下积分求得:

$$\int_{0}^{L} \frac{1}{2\lambda} \sigma_{0}^{2} \left[e^{-\frac{x}{D}} + e^{-\frac{L-x}{D}} \right]^{2} dx = \frac{\sigma_{0}^{2}}{2\lambda} \left[1 - e^{-\frac{2L}{D}} + \frac{2L}{D} e^{-\frac{L}{D}} \right] (10)$$

式中 λ 是弹性系数。

5 膜层的最佳尺寸和能量

在此探求共晶系统的最佳尺寸和能量,由(7)式 表面能变化和两倍的(10)式应力能变化得到如下的 (6) 总能变化量,其中假定了两侧的应力能近似相等: Academic Journal Electronic Publishing House. Alf inglits reserved.

$$E = 2 \cdot \frac{\sigma_0^2}{2\lambda} D \left[1 - e^{-\frac{2L}{D}} + \frac{2L}{D} e^{-\frac{L}{D}} \right] - \frac{1}{2\sqrt{4\pi e^2}} \frac{(B_- - B_+ + \mu)^2}{\sqrt{A_+} + \sqrt{A_-}}$$
(11)

定义

$$\varepsilon \equiv \frac{E}{\frac{\sigma_0^2}{\lambda}L} = \gamma^{-1} \left(2\gamma e^{-\gamma} - e^{-2\gamma} + \gamma \right) (12)$$

式中:

$$\gamma = -1 + \frac{\varepsilon_0}{\frac{\sigma_0^2 D}{\lambda}}$$

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}y} = \mathrm{e}^{-2y} \left(1 + 2y \right) - 2y^2 e^{-y} + \gamma = 0 \tag{13}$$

由此可得:

$$[2y^{2} - (1 + 2y)e^{-y}]e^{-y} \equiv f(y)$$
(14)

式(13)的解 y 示于图 3 曲线 f(y) - y 和表 1 ,可以看出 必须取 0 < y < 1。

图 3 f(y)-y 关系 Fig. 3 Relationship between f(y) and y

表1 能量解

Table 1	The	solution	01	the	energy	

f(y) = -1 = 0.22 = 0.99 = 0.89 = 0.58	У	0	I	2	3	4	
	f(y)	- 1	0.22	0.99	0.89	0. 58	

当 $0 < \eta < 1$ 时 ,有两个可能的解 :一个解 y_1 较大 ,对应

于最小能量密度;另一个 y_2 较小,对应于最大能量密度。前者是稳定的,如 Zn-5Al, Fe(γ)-Fe₃C 等共晶体, 后者则是不稳定的混合晶态。

γ<0 和 γ>1 两种情况都是不稳定的 :γ<0 时,两 组分的化学势差引起的能量变化不足以抵消电子密 度差造成的横向压力引起的能量变化,最终断裂为宏 观尺寸的材质,类似于纯晶态的情况;γ>1 则是另一 种状态,化学势差的作用非常强,使整个材质成为混 合物,颗粒散布于基材中,这些小颗粒可以是亚稳的 固溶体,如同 CuAl₂中的 Al 由亚稳态经相变后沉淀、 NiC-WC 固溶体中的沉积物^[3],对钢而言就是贝氏结 构。还要提及的是,在稳定的共晶态中,如果材质很均 匀,共晶体仍可能进入小颗粒中。

共晶体中存在两个稳态,一个是夹层膜结构的; 另一个可能是由非常小的小晶粒混合组成的,与共析 后奥氏体的后期冷却阶段形成的贝氏体结构相似,或 与钢相变中共晶化后形成的莱氏体结构相似。

贝壳类壳层结构的性能非常好,对壳层的生长机 理的研究很有意义。共晶结构相间壳层的形成与此十 分相似,如果应用壳层共晶结构材料,将会有助于修 复器件能力的形成。共晶能使间界面张力小的小晶粒 三相共存,并会促进块壳材料的生长和重构,共晶方 面开展的理论研究将会为其提供有用的参考。

参考文献 References

- [1] Cheng Kaijia(程开甲), Cheng Shuyu(程漱玉). Progress in Natural Science(自然科学进展)[J],1996,6(6):693
- [2] Cheng Kaijia(程开甲), Cheng Shuyu(程漱玉). Progress in Natural Science(自然科学进展)[J],1998,8(1):20
- [3] Уманский Я С. ФИЗИЧЕСКИЕ ОСНОВЫ МЕТАЛЛОВЕ-ДЕНИЯ[М]. Москва: ГОСУДАРС- ТВЕННОЕ НАУЧНО--ТЕХНИЧЕСКОЕ ИЗДАТЕЛЬСТВО, 1955: 523 ~ 528

On the Mechanism of Eutectic Structure

Cheng Kaijia ,Cheng Shuyu

(Northwest Institute of Nuclear Technology, Xi'an 710024, China)

Abstract The criteria for stability of eutectics, solid solutions and precipitates are proposed. It is based on the Thomas-Fermi-Dirac model on the boundary conditions that electron densities and chemical potentials should be equal in either side of a composite film. The optimum condition for stabilizing the energy balance and the sizes of eutectics or precipitates is given.

Key words: Thomas-Fermi-Dirac ; eutectics ; internal stress ; chemical potential ; electron density

Biography : Cheng Kaijia, Academician of Chinese Academy of Sciences, Northwest Institute of Nuclear Technology, Xi'an 710024, ?1994-2015 R:1ChinaATel:0086c29o8222694 lectronic Publishing House. All rights reserved. http://www.cnki.net