

MORE THAN JUST CLOUD | C-) Alibaba Cloud

最佳实践

通过物理专线访问VPC云服务

AnyTunnel地址

AnyTunnel地址指的是每个VPC中100.64.0.0/10内的地址,用于VPC中DNS、YUM、NTP、OSS或SLS等云服务中使用。

当您需要从本地数据中心通过物理专线访问VPC中的云服务时,需要在边界路由器(VBR)中将 100.64.0.0/10网段的路由条目指向VPC方向的路由器接口,并在本地数据中心的网关设备上将 100.64.0.0/10网段的路由指向VBR的阿里云侧互联IP。

说明:由于100.64.0.0/10网段属于VPC中的保留网段,因此不能直接在VBR中添加目的网段为 100.64.0.0/10的路由条目。需要将该网段拆分成100.64.0.0/11和100.96.0.0/11,在VBR中配置来年两个 路由条目。

在VBR中配置路由

登录高速通道管理控制台。

在左侧导航栏中,单击物理专线连接 > 边界路由器。

在目标边界路由器的操作列中,单击管理。

在边界路由器详情页,单击添加路由,填写参数。在此例中配置如下:

- 目标网段:分别为100.64.0.0/11和100.96.0.0/11
- 下一跳方向:指向VPC方向
- 下一跳:选择数据包的出口,在本教程中即VBR的路由器接口。

单击确定,完成配置。

配置专线客户侧接入设备路由

在专线客户侧的接入设备上,增加指向阿里云的静态路由: ip route 100.64.0.0/10 {阿里侧互联ip}

物理专线网络性能测试方法

物理专线接入完成后,您需要需要对物理专线的性能进行测试,确保物理专线可以满足您的业务需求。

前提条件

在测试前,确保您完成以下环境准备:

完成物理专线接入和路由配置。本地IDC与VPC必须由一根专线连通。

准备1台本地IDC网络接入设备: 被压力测试网络PPS的IDC网络接入设备,可作为Netperf或iperf3测试中的客户端或服务器端。

本操作中, IDC网络设备的IP地址为: 192.168.100.1。

准备8台专有网络ECS实例:作为Netperf或iperf3测试中的客户端端或服务器端。与本地IDC网络接入设备之间建立控制连接,传递测试配置相关的信息,以及测试结果。

本操作中使用8台规格为ecs.se1.2xlarge 镜像为centos_7_2_64_40G_base_20170222.vhd的ECS实例, IP地址为172.16.0.2 – 172.16.0.9。

搭建测试环境

安装Netperf

Netperf是一个网络性能的测量工具,主要针对基于TCP或UDP传输。

完成以下操作,分别在IDC网络设备和8台ECS实例上安装Netperf:

执行以下命令下载Netperf。

wget -c "https://codeload.github.com/HewlettPackard/netperf/tar.gz/netperf-2.5.0" -O netperf-2.5.0.tar.gz

执行以下命令安装Netperf。

tar -zxvf netperf-2.5.0.tar.gz cd netperf-netperf-2.5.0 ./configure make make install

执行netperf -h和netserver -h验证安装是否成功。

安装iPerf3

Iperf3是一个网络性能测试工具。Iperf3可以测试最大TCP和UDP带宽性能。

完成以下操作,分别在IDC网络设备和8台ECS实例上安装iPerf3:

执行以下命令下载iPerf3。

yum install git -y git clone https://github.com/esnet/iperf

执行以下命令安装iPerf3。

cd iperf ./configure && make && make install && cd .. cd src ADD_PATH="\$(pwd)" PATH="\${ADD_PATH}:\${PATH}" export PATH

执行命令iperf3-h,验证安装是否成功。

开启多队列功能

在IDC网络接入设备内部执行以下命令,开启多队列功能。(假设与物理专线相连的接口为eth0。)

ethtool -L eth0 combined 4 echo "ff" > /sys/class/net/eth0/queues/rx-0/rps_cpus echo "ff" > /sys/class/net/eth0/queues/rx-1/rps_cpus echo "ff" > /sys/class/net/eth0/queues/rx-2/rps_cpus echo "ff" > /sys/class/net/eth0/queues/rx-3/rps_cpus

使用Netperf工具测试物理专线的包转发性能

Netperf安装完成后会创建两个命令行工具:netserver(服务器端)和netperf(客户端)。两个工具的主要参数说明如下表所示。

工具名称	主要参数	参数说明
Netserver(服务器端:接收端 工具)	-р	监听的的端口号。
	-Н	IDC网络接入设备或VPC服务器 的IP地址。
	-р	IDC网络接入设备或VPC服务器 的端口。
	-1	运行时间。
netperf (客户端:发送端工具)	-t	发送报文的协议类型 :TCP_STREAM 或 UDP_STREAM。 建议使用UDP_STREAM。
	-m	数据包大小。 - 测试pps (packet per second) 时,建议设 置为1。 - 测试bps (bit per second) 时,建议设 置为1400。

测试收方向

在IDC网络接入设备内启动netserver进程,指定不同端口,如下所示:

netserver -p 11256 netserver -p 11257 netserver -p 11258 netserver -p 11260 netserver -p 11261 netserver -p 11262 netserver -p 11263

在VPC内的8台ECS实例上启动netperf进程,分别指定到IDC网络接入设备的不同netserver端口。

```
netperf -H 192.168.100.1 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第一台
netperf -H 192.168.100.1 -p 11257 -t UDP_STREAM -I 300 -- -m 1 #第三台
netperf -H 192.168.100.1 -p 11258 -t UDP_STREAM -I 300 -- -m 1 #第三台
netperf -H 192.168.100.1 -p 11259 -t UDP_STREAM -I 300 -- -m 1 #第四台
netperf -H 192.168.100.1 -p 11260 -t UDP_STREAM -I 300 -- -m 1 #第五台
netperf -H 192.168.100.1 -p 11261 -t UDP_STREAM -I 300 -- -m 1 #第六台
netperf -H 192.168.100.1 -p 11262 -t UDP_STREAM -I 300 -- -m 1 #第六台
netperf -H 192.168.100.1 -p 11263 -t UDP_STREAM -I 300 -- -m 1 #第七台
```

如果需要测试bps,将上述命令修改为:

```
netperf -H 192.168.100.1 -p 11256 -t UDP_STREAM -I 300 --- m 1400 #第一台
netperf -H 192.168.100.1 -p 11257 -t UDP_STREAM -I 300 --- m 1400 #第二台
netperf -H 192.168.100.1 -p 11258 -t UDP_STREAM -I 300 --- m 1400 #第三台
netperf -H 192.168.100.1 -p 11259 -t UDP_STREAM -I 300 --- m 1400 #第三台
netperf -H 192.168.100.1 -p 11260 -t UDP_STREAM -I 300 --- m 1400 #第五台
netperf -H 192.168.100.1 -p 11261 -t UDP_STREAM -I 300 --- m 1400 #第六台
netperf -H 192.168.100.1 -p 11262 -t UDP_STREAM -I 300 --- m 1400 #第六台
netperf -H 192.168.100.1 -p 11263 -t UDP_STREAM -I 300 --- m 1400 #第七台
```

测试发方向

在8台VPC ECS实例内启动netserver进程,指定端口,如下所示:

netserver -p 11256

在IDC网络接入设备内启动8个netperf进程,指定为不同IP地址。

netperf -H 172.16.0.2 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第一台ECS实例 netperf -H 172.16.0.3 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第二台ECS实例 netperf -H 172.16.0.4 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第三台ECS实例 netperf -H 172.16.0.5 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第四台ECS实例 netperf -H 172.16.0.6 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第五台ECS实例 netperf -H 172.16.0.7 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第六台ECS实例 netperf -H 172.16.0.8 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第六台ECS实例 netperf -H 172.16.0.8 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第七台ECS实例 netperf -H 172.16.0.9 -p 11256 -t UDP_STREAM -I 300 -- -m 1 #第七台ECS实例

如果需要测试bps,将上述命令修改为:

netperf -H 192.168.100.1 -p 11256 -t UDP_STREAM -I 300 -- -m 1400 #第一台ECS实例 netperf -H 192.168.100.1 -p 11257 -t UDP_STREAM -I 300 -- -m 1400 #第二台ECS实例 netperf -H 192.168.100.1 -p 11258 -t UDP_STREAM -I 300 -- -m 1400 #第三台ECS实例 netperf -H 192.168.100.1 -p 11259 -t UDP_STREAM -I 300 -- -m 1400 #第四台ECS实例 netperf -H 192.168.100.1 -p 11260 -t UDP_STREAM -I 300 -- -m 1400 #第五台ECS实例 netperf -H 192.168.100.1 -p 11261 -t UDP_STREAM -I 300 -- -m 1400 #第六台ECS实例 netperf -H 192.168.100.1 -p 11262 -t UDP_STREAM -I 300 -- -m 1400 #第七台ECS实例 netperf -H 192.168.100.1 -p 11263 -t UDP_STREAM -I 300 -- -m 1400 #第八台ECS实例

分析测试结果

客户端的netperf进程执行完毕后,会显示如下结果。

Socket Message Elapsed Messages Size Size Time Okay Errors Throughput bytes bytes secs # # 10^6bits/sec

124928 1 10.00 4532554 0 3.63 212992 10.00 1099999 0.88

显示结果中各字段含义如下表所示。

字段	含义
Socket Size	缓冲区大小
Message Size	数据包大小(Byte)
Elapsed Time	测试时间(s)
Message Okay	发送成功的报文数
Message Errors	发送失败的的报文数
Throughput	网络吞吐量(Mbit/s)

通过发送成功的报文数除以测试时间,即可算出测试链路的pps,即pps=发送成功的报文数/测试时间。

使用iPerf3测试物理专线的带宽

iPerf3的主要参数说明如下表所示。

工具名称	主要参数	参数说明
	-S	表示作为服务器端接收数据。
	-i	设置每次报告之间的时间间隔 ,单位为秒。
	-р	指定服务端的监听端口。
iPerf3	-u	表示使用UDP协议发送报文。 若不指定该参数则表示使用 TCP协议。
	-l -l 1400。 -l	
	-b	UDP模式使用的带宽,单位

	bits/s。
-t	设置传输的总时间。Iperf在指 定的时间内 , 重复的发送指定长 度的数据包 , 默认值为10秒。
-A	设置CPU亲和性,可以将的 iPerf3进程绑定对应编号的逻辑 CPU,避免iPerf3的进程在不同 的CPU间被调度。

测试收方向

在IDC网络接入设备中以server模式启动iperf3进程,指定不同端口,如下所示:

iPerf3 -s -i 1 -p 16001 iPerf3 -s -i 1 -p 16002 iPerf3 -s -i 1 -p 16003 iPerf3 -s -i 1 -p 16004 iPerf3 -s -i 1 -p 16005 iPerf3 -s -i 1 -p 16007 iPerf3 -s -i 1 -p 16008

在VPC ECS实例上以client模式启动iperf3进程,分别指定到IDC网络接入设备的不同端口。

iPerf3 -u -l 16 -b 100m -t 120 -c 192.168.100.1 -i 1 -p 16001 -A 1 iPerf3 -u -l 16 -b 100m -t 120 -c 192.168.100.1 -i 1 -p 16002 -A 2 iPerf3 -u -l 16 -b 100m -t 120 -c 192.168.100.1 -i 1 -p 16003 -A 3 iPerf3 -u -l 16 -b 100m -t 120 -c 192.168.100.1 -i 1 -p 16004 -A 4 iPerf3 -u -l 16 -b 100m -t 120 -c 192.168.100.1 -i 1 -p 16005 -A 5 iPerf3 -u -l 16 -b 100m -t 120 -c 192.168.100.1 -i 1 -p 16006 -A 6 iPerf3 -u -l 16 -b 100m -t 120 -c 192.168.100.1 -i 1 -p 16007 -A 7 iPerf3 -u -l 16 -b 100m -t 120 -c 192.168.100.1 -i 1 -p 16007 -A 7

测试发方向

在每个VPC ECS实例上server模式启动iperf3进程并指定端口。

iPerf3 -s -i 1 -p 16001

在IDC接入设备上以client模式启动8个iperf3进程,-c的值为各个陪练机的IP地址。

iPerf3 -u -l 16 -b 100m -t 120 -c 172.16.0.2 -i 1 -p 16001 -A 1

iPerf3 -u -l 16 -b 100m -t 120 -c 172.16.0.3 -i 1 -p 16001 -A 2 iPerf3 -u -l 16 -b 100m -t 120 -c 172.16.0.4 -i 1 -p 16001 -A 3 iPerf3 -u -l 16 -b 100m -t 120 -c 172.16.0.5 -i 1 -p 16001 -A 4 iPerf3 -u -l 16 -b 100m -t 120 -c 172.16.0.6 -i 1 -p 16001 -A 5 iPerf3 -u -l 16 -b 100m -t 120 -c 172.16.0.7 -i 1 -p 16001 -A 6 iPerf3 -u -l 16 -b 100m -t 120 -c 172.16.0.8 -i 1 -p 16001 -A 7 iPerf3 -u -l 16 -b 100m -t 120 -c 172.16.0.9 -i 1 -p 16001 -A 8

分析测试结果

客户端的iPerf3进程执行完毕后,会显示如下结果。

[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [4] 0.00-10.00 sec 237 MBytes 199 Mbits/sec 0.027 ms 500/30352 (1.6%) [4] Sent 30352 datagrams

显示结果中各字段含义如下表所示。

字段	含义
Transfer	传输的总数据量
Bandwidth	带宽大小
Jitter	抖动
Lost/Total Datagrams	丢失报文数/总报文数 (丢包率)

PPS=对端收到的包 / 时间

说明: 建议您在server端运行sar命令来统计实际收到的包并作为实际结果,例如: sar -n DEV 1 320。

阿里云侧速率限制

除了物理专线的限制外, VPC与本地数据中心之间的通信还受到以下限制。

OSS的读写速率上限为5Gbit/s。

为了提高可靠性,从VPC到边界路由器(VBR)方向的单个hash流,在阿里云内部被限速为"高速通道规格带宽/12"。例如VBR到VPC的带宽为large1,即1Gbps带宽,则单个hash流的最大带宽为83Mbps。

hash流定义:源IP地址、源端口、传输层协议、目的IP地址和目的端口,这五个量组成的一个集合所 定义的数据流。例如: "192.168.1.1 10000 TCP 121.14.88.76 80" 就构成了一个hash流。即一个 IP地址为192.168.1.1的终端通过端口10000,利用TCP协议,和IP地址为121.14.88.76,端口为80的 终端进行的连接就是一个hash流。

您可以复用已接入到阿里云接入点的物理专线,连接多个VPC。

说明:目前支持一根专线最多接入5个VPC,可提交工单增加配额。

使用场景

某公司在阿里云上开通了账号A,并创建了专有网络VPC-A。账号A已经申请开通了一条物理专线将该公司的本 地数据中心和VPC-A连接了起来。该公司的一个子公司在阿里云上开通了一个账号B,账号B下有一个专有网络 VPC-B。现在子公司希望将VPC-B与本地IDC连接起来。

由于账号A已经购买了专线并将本地IDC接入到阿里云的接入点上,所以子公司账号B的专有网络VPC-B可以复用账号A的专线和边界路由器(VBR)。该公司只需要为账号A的VBR重新创建一个路由器接口,再为VPC-B创建一个路由器接口,将两个新建的路由器接口连接起来接口,如下图所示。

本教程以此场景为例介绍如何复用物理专线连接多个VPC。本教程中的VPC配置和专线配置如下:

账号A	账号B
账号ID:12345678	账号ID:87654321
专有网络 - 名称:VPC-A - 地域:华北2(北京)	专有网络 - 名称:VPC-B - 地域:华东1(杭州)

- VPC ID : vpc-12345678	- VPC ID : vpc-87654321
- CIDR block : 10.10.0.0/16	- CIDR block : 192.168.0.0/16
专线连接 - VBR名称:专有网络-北京 - VBR ID:vbr-12345678 - 专线ID:pc-AAA - VLAN ID:1000	无

步骤一:创建路由器接口

在账号A的VBR上以及账号B的VPC上各创建一个路由器接口,VPC的路由器和VBR可以通过路由器接口向对方 发送消息。更多详情参考路由器接口。

注意:边界路由器的路由器接口必须是连接发起端。

创建发起端路由器接口

完成以下操作为边界路由器创建路由器接口:

使用账号A登录高速通道管理控制台。

在左侧导航栏,选择路由器接口。单击创建路由器接口。

配置路由器接口,本教程中的路由器接口配置如下:

连接场景:**专线接入**

创建路由器接口场景:**只创建发起端**

路由器类型:边界路由器

地域:选择华北2(北京)

接入点:北京-大兴A

本端VBR ID: vbr-12345678

对端地域:选择华东1(杭州)

对端路由器类型:VPC路由器

规格:大型1档(1Gb)

单击**立即购买**,完成创建。

大约一分钟后,返回路由器接口列表页面,选择对应的地域,即可看到账号A的路由器接口。本教程中账号A的路由器接口ID为ri-AAA。

创建接受端路由器接口

完成以下操作创建接受端路由器接口:

使用账号B登录高速通道管理控制台。

在左侧导航栏,选择路由器接口。单击创建路由器接口。

配置路由器接口,本教程中的路由器接口配置如下:

计费方式:按量计费

连接场景:**专线接入**

创建路由器接口场景: 只创建接受端

路由器类型: VPC路由器

地域:华东1(杭州)

本端VPC ID: vpc-87654321

对端地域:华北2(北京)

对端接入点:大兴A

对端路由器类型:边界路由器

单击**立即购买**。

大约1分钟后,返回路由器接口列表页面,选择对应的地域,即可看到账号B的路由器接口。本教程中账号B的路由器接口ID为ri-BBB。

步骤二:发起连接

创建路由器接口后需要添加对端路由器接口,并发起连接打通路由器接口的通信。只有发起端路由器接口才可 以发起连接。

为账号B的VPC路由器接口添加对端

使用账号B登录高速通道管理控制台。

在左侧导航栏,选择路由器接口。

选择路由器接口的所属的地域,找到目标路由器接口。

单击对端路由器接口列下的添加,或者单击更多 > 编辑对端路由器接口信息。

在弹出的对话框中,选择**其他账户**,然后分别填写账号A的账号ID(12345678)、边界路由器ID(vbr-AAA)、路由器接口ID(ri-AAA)。

添力	叼对端路由器接口(言息		×
	所属账号:	○ 当前账号	◉ 其他账号	
	对端路由器类型:	边界路由器		
	* 对端账号ID:			
	* 对端路由器ID:			
	* 对端路由器接口 ID :]
				确定 取消

为账号A的边界路由器的路由器接口添加对端并发起连接

完成以下操作为账号A的边界路由器的路由器接口添加对端并发起连接:

使用账号A登录高速通道管理控制台。

在左侧导航栏,选择路由器接口。

选择路由器接口的所属的地域,找到目标路由器接口。

单击对端路由器接口列下的添加,或者单击更多 > 编辑对端路由器接口信息。

在弹出的对话框中,选择**其他账户**,然后分别填写账号B的账号ID(87654321)、VPC的路由器ID(vrt-BBB)、路由器接口ID(ri-BBB)。

添	加对端路由器接口信	息		×
	能居账号 .			
	对端路由器类型:	VPC路由器		
	* 对端账号ID:		•	
	* 对端路由器ID:			
	* 对端路由器接口 ID:			
				确定 取消

找到边界路由器的路由器接口,单击发起连接。

当两个账号下的路由器接口ri-AAA和ri-BBB的状态为已激活时,表示连接成功。

步骤三:配置路由

路由器接口创建好后,您还需要配置路由,这样本地IDC与VPC之间在网络层面上才能互通。

配置边界路由器的路由

完成以下操作将VBR上访问IDC(网段:172.16.0.0/12)的流量转发至物理专线:

使用账号A登录高速通道管理控制台。

在左侧导航栏,单击边界路由器。

找到目标边界路由器,单击管理,然后在边界路由器详情页单击添加路由。

配置路由。本操作的路由配置如下:

目标网段:本地IDC的网段。在本例中即172.16.0.0/12。

下一跳方式:指向专线方向,并选择创建好的专线。

完成以下操作将VBR上访问VPC(网段:192.168.0.0/16)的流量转发至VPC:

使用账号A登录高速通道管理控制台。

在左侧导航栏,单击边界路由器。

找到目标边界路由器,单击管理,然后在边界路由器详情页单击添加路由。

配置路由。本操作的路由配置如下:

目标网段:对端VPC的网段。在本例中即192.168.0.0/16。

下一跳方向:指向VPC方向

下一跳:选择边界路由器的路由器接口,在本例中为ri-BBB。

配置VPC的路由

完成以下操作,添加一条路由将VPC中访问IDC(网段:172.16.0.0/12)的流量转发至 VBR:

使用账号B登录高速通道管理控制台。

在左侧导航栏,单击路由器接口,找到目标路由器接口,然后单击路由配置。

ri-1 -	ы	vrt-2zepuy8qbrq6yhdje53t6 VPC路由器	华北 2	ri 70	北京-大兴- A	接收满	Negative	已激活	按量付费 2018-01-04 21:35:32 连 接	路由配置	冻结 更多▼
ID/名称	监控	路由器ID/类型(所有) ▼	本端位置	对端路由器接口	对端位置	连接角 色	规格	状态(所有) ▼	付鶈类型		操作
路由器接口ID 🔻 请输入路	由器接	口ID进行精确查询	搜索								

配置路由,本操作的路由配置如下:

目标网段:本地IDC的网段。在本例中即172.16.0.0/12。

下一跳类型:路由器接口

路由器接口:选择VPC-B的路由器接口,在本例中为ri-AAA。

配置本地IDC接入设备路由

至此,已完成阿里云上的路由配置,客户专线接入设备还需增加VPC网段的路由,指向专线阿里云侧IP,例如:

ip route 192.168.0.0/16 10.100.0.1

您也可以配置BGP动态路由,将流量指向边界路由器:

创建BGP组,详情参见创建BGP组。

在BGP组中添加BGP邻居,详情参见创建BGP邻居。

添加BGP路由,详情参见添加BGP路由。

注意: BGP路由的目标网段必须与配置静态路由配置的网段一致。在本教程中即 192.168.0.0/16。

至此,已经完成了全部配置。

步骤四: 验收测试

网络互通后,请测试物理专线速率,以确保满足业务需求。详细测速方式请参考文档物理专线网络性能测试。

通过高速通道实现就近接入和一点接入连接全球

功能概述

高速通道可以帮助您在本地IDC和部署在各地域的阿里云VPC之间建立高质量、高可靠的内网通信。阿里云高速 通道产品有如下两大核心功能。

VPC互连

高速通道支持位于相同地域或不同地域,同一账号或不同账号的VPC之间进行内网互通。目前同地域间的VPC互连不收取费用。

阿里云通过在两侧VPC的路由器上分别创建路由器接口,以及自有的骨干传输网络来搭建高速通道,轻松实现两个VPC之间安全可靠,方便快捷的通信。详情参见VPC互连。

专线接入

您可以通过物理专线在物理层面上连接您的本地数据中心到阿里云,然后建立边界路由器和路由器接 口来连接数据中心与阿里云VPC。详情参见物理专线接入。

就近接入

用户在使用专线将本地IDC和阿里云VPC互连时,选择距离本地IDC最近的接入点即可,无需在本地IDC和VPC所在地域间建立专线。

您可以通过**高速通道一张图**或高速通道控制台的**专线接入点信息**来获取接入点的信息。如果您的本地IDC位于 接入点所在的城市,您可以直接申请专线接入到这些接入点。

接入类型:	VPC
专线名称:	填写专线名称
* 接入点:	选择region ▼ 选择接入点 ▼
* 使用运营商:	请选择运营商 ▼
* 接入端口类型:	选择端口类型 ▼ 查看价格明细
接入带宽:	2 Mbps [2-10000]
* 专线对端地址:	请选择 ▼ 请选择 ▼ 请选择 ▼
	请填写街道地址

如果您的本地IDC所在城市没有接入点,您可以自行选择一个距离您的本地IDC较近的接入点,在IDC和该接入点之间建立连接即可。

例如,一个用户在北京和天津各有一个本地IDC,那么该用户可以根据以下策略进行专线接入:

由于北京有接入点,该用户只需使用专线把位于北京的IDC和阿里云北京接入点连接即可。

由于天津没有接入点,但位于天津的IDC距离阿里云北京接入点距离较近,该用户可以使用专线把位于天津的IDC和阿里云北京接入点连接。

-点接入连接全球

您只需要接入任何一个接入点,就可以通过该接入点和阿里云遍布全球各地域的VPC连接起来。

例如,一个用户需要将位于北京的IDC通过专线接入到位于北京和深圳的VPC。此时,该用户只需要用一条专线将IDC连接至到阿里云北京接入点,然后在边界路由器(VBR)上创建两个分别连接至两个VPC的路由器接口(RI)即可。

说明:下图中只有橙色的专线是该用户需要找运营商施工的线路。

