ALOHA 模型构建与仿真

1. 实验原理

设计 ALOHA 网络模型将使用一个发射机节点传送数据包,并且使用一个接收器节点模型执行网络监测。模型结构如图 1 所示。

理论上,ALOHA系统可以模拟成一个简单的资源发生器和一个总线发射器。 我们在此将设计更多通用的模型,在后面设计 CSMA 时便可以在此基础上轻松 实现。

2. 实验原理步骤

2.1. 创建发射节点的进程模型

- 1) 打开 OPNET.
- 2) 选择 File > New... 然后在下拉菜单中选择 Process Model,单击 OK。
- 3) 使用 Create State 工具按钮,在编辑窗口放置三个状态.

图 2-1

- 4) 接着对这三个状态做如下设置
- (a)将第一个状态的 name 属性改为 init,将其 status 属性改为 forced.
- (b)对于第二个状态,将其 name 属性改为 idle.
- (c)对于第三个状态将其 name 属性改为 tx_pkt,将其 status 属性改为 forced

图 2-2

5) 在状态之间添加转移线

(a) 按照下图所示连接转移线

图 3-3

(b) 将 idle 状态到 tx_pkt 状态转移线的 condition 属性改为 PKT_ARVL.

PKT_ARVL 宏用来判断是否收到了流中断,在这个进程中,只会收到来自 generator,模块的流中断,所以在定义宏的时候不需要指定流中断来自于哪个 包流线。

6) 在 Header Block 中添加如下代码,并保存

/* Input stream from generator module */

#define IN_STRM 0

/* Output stream to bus transmitter module */

#define OUT_STRM 0

/* Conditional macros */

#define PKT_ARVL (op_intrpt_type() == OPC_INTRPT_STRM)

/* Global Variable */

extern int subm_pkts;

7) 打开 State Variable Block 进行如图 2-4 所示设置

6	🖌 initials_aloha_tx.state variables		- Dege	×
	Туре	Name	Comments	
	int	max_packet_count	/* Number of packets to process :	*/
	•			
	Edit ASCII Delete		Find Next <u>O</u> K	<u>C</u> ancel
L	J• 181	UIE Case		

图 2-4

8) 定义 init 状态的动作,并添加如下执行代码

/* Get the maximum packet count, */

/* set at simulation run-time */

op_ima_sim_attr_get_int32 ("max packet count",

&max_packet_count);

9) 定义 tx_pkt 状态的动作,并添加如下执行代码

/* Outgoing packet */

Packet *out_pkt;

/* A packet has arrived for transmission. Acquire */

/* the packet from the input stream, send the packet */

/* and update the global submitted packet counter. */

out_pkt = op_pk_get (IN_STRM);

op_pk_send (out_pkt, OUT_STRM);

++subm_pkts;

/* Compare the total number of packets submitted with */

/* the maximum set for this simulation run. If equal */

/* end the simulation run. */

if (subm_pkts == max_packet_count)

op_sim_end ("max packet count reached.", "", "", "");

保存,并关闭对话框

- 10) 定义仿真属性
- (a) 选择 Interfaces > Global Attributes.
- (b) 输入下图所示信息

Attribute Name	Group	Туре	Units	Default Value
max packet count	l l	integer		0

图 2-5

- (c) 单击 **OK**, 保存
- 11) 设置进程模型接口
- (a) 选择 Interfaces > Process Interfaces.
- (b) 将 begsim intrpt 属性改为 enabled。
- (c) 将其他属性的 Status 改为 hidden。
- (d) 单击 **OK**,关闭对话框

12) 编译进程,保存名字为<initials>_aloha_tx,编译成功后,关闭进程模型 编辑器。

2.2. 创建发射节点的节点模型

- 1)选择 File > New···, 然后从下拉菜单中选择 Node Model, 单击 OK。
- 2) 编辑窗口放置两个 processor 和一个 bus transmitter。
- 3) 按照下图所示修改每个模块的名字,并连接包流线。

4) 提升 gen 模块的 interarrival time 属性。

(a) 右键单击 gen 模块, 打开其属性对话框。

(b) 将 process model 属性改为 simple_source。

(c) 右键单击 Packet Interarrival Time, 选择 Promote Attribute to Higher Level, 则在 右边 Value 会显示 promoted, 如图

Packet Format	NONE
Packet Interarrival Time	promoted
Packet Size	constant (1024)

图 2-7

(d) 单击 OK, 关闭属性对话框。

5) 设置 tx_proc 模块的属性

(a) 打开 tx_proc 的属性对话框,将 process model 属性设置为<initials>_aloha_tx。

- (b) 单击 OK, 关闭属性对话框。
- 6) 对上述所创建的节点模型进行功能增强。

图 2-8

(a)在原有基础上增加一个 process 模块和一个 bus transmitter,分别命名为 sink 和 bus_rx, 并用包流线按照下图方式连接。

图 2-9

(b) 使用 Create Statistic Wire 工具按钮,按照下图方式连接 bus_rx 和 tx_proc。

图 2-10

(c)右键单击橙色的 statistic wire,打开其属性对话框,将 rising edge trigger 和 falling edge trigger 属性都改为 disabled。单击 OK,关闭属性对话框。

7) 检查包流线的连接是否正确

(a) 右键单击 tx_proc 模块,选择 Show Connectivity,确定和下图一致。

图 2-11

- (b) 如果不一致,则做如下修改
 - 右键单击 gen 到 tx_proc 模块之间的包流线,选择 Edit Attributes,打开属性对话框。
 - 将 src stream 属性的值改为 src stream [0]。
 - 单击 OK,关闭属性对话框。
 - 右键单击 bus_rx 到 tx_proc 之间的统计线,选择 Edit Attributes,打开属性对话框。
 - 将 dest stat 属性的值修改为 instat [0]。
 - 单击 OK,关闭属性对话框。
- 8) 设置节点模型接口
- (a) 选择 Interfaces > Node Interfaces。
- (b) 在 Node types 列表中,将 mobile 和 satellite 项的 Supported 值改为 no。
- (c) 除了 gen. Packet Interarrival Time 属性之外,将其他属性的 Status 值都改为 hidden。
- (d) 单击 OK, 关闭对话框。
- 9) 将节点模型保存为<initials>_cct_tx,然后关闭节点模型编辑器。

2.3. 创建接收节点的进程模型

1) 选择 File > New···,从下拉菜单中选择 Process Model,然后单击 OK。

2) 使用 Create State 在编辑窗口中放置两个状态,分别命名为 init 和 idle, 并将 init 状态设置为 forced。

3) 按照下图方式连接转移线

图 2-12

idle 状态到自身的转移线有三条:

(a)第一条(最上面)转移线的 condition 属性改为 PKT_RCVD, executive 属性改为 proc_pkt()。

(b) 第二条(中间) 转移线的 condition 属性改为 default。

(c) 第三条(最下面) 转移线的 condition 属性改为 END_SIM, executive 属性改为 record_stats()。

4) 在 Header Block 中添加如下代码

/* Input stream from bus receiver */

#define IN_STRM 0

/* Conditional macros */

#define PKT_RCVD (op_intrpt_type () == OPC_INTRPT_STRM)

#define END_SIM (op_intrpt_type () == OPC_INTRPT_ENDSIM)

/* Global variable */

int subm_pkts = 0;

宏 IN_STRM 表示来自 bus receiver 模块的输入流;宏 PKT_RCVD 用于判断流中断 是否到来;宏 END_SIM 用于判断仿真结束中断(在仿真结束时,由仿真内核自动

触发)是否到来。全局变量 subm_pkts 用于记录所有节点发送的总的数据包数。 在 HB 里面定义的变量为全局变量,网络中的所有节点都可以访问。

5) 定义状态变量 SV (State Variables)

打开 State Variables block, 输入下图所示信息, 然后保存。

Type Name		Comments		
int	revd_pkts	Received packet counter		
	1			

图 2-13

6) 打开 Function Block, 添加如下代码

/* it, and logs the incremented received packet total */

static void proc_pkt (void)

{
Packet* in_pkt;
FIN (proc_pkt());
/* Get packet from bus receiver input stream */
in_pkt = op_pk_get (IN_STRM);

/*Destroy the received packet */

op_pk_destroy (in_pkt);

/* Increment the count of received packet */
++rcvd_pkts;
FOUT;

}

/* This function writes the end-of-simulation channel */
/* traffic and channel throughput statistics to a */
/* vector file

static void record_stats (void)

{
double cur_time;
FIN (record_stats());
cur_time = op_sim_time();
/* Record final statistics */
op_stat_scalar_write ("Channel Traffic G",
 (double) subm_pkts / cur_time);
op_stat_scalar_write ("Channel Throughput S",
 (double) rcvd_pkts / cur_time);

FOUT;

}

7) 双击 init 状态打开 Enter Executives block, 添加如下代码

/* Initialize accumulator */

rcvd_pkts = 0;

- 8) 设置进程接口
- (a) 选择 Interfaces > Process Interfaces。
- (b) 将 begsim intrpt 和 endsim intrpt 属性的 initial value 值都改为 enabled。
- (c)将所有属性的 Status 值都改为 hidden。
- (d) 单击 **OK**,关闭对话框。

Attribute Name	Status	Initial Value
begsim intrpt	hidden	enabled
doc file	hidden	nd_module
endsim intrpt	hidden	enabled
failure intrpts	hidden	disabled
intrpt interval	set	disabled
priority	promoted	0
recovery intrpts	set	disabled
subqueue	set	()
super priority	set	disabled

图 2-14

9) 编译进程模型

- (a) 单击 Compile Process Model 工具按钮。
- (b)将进程模型保存为<initials>_cct_rx,然后单击 Save 按钮。
- (c)关闭编译对话框和进程模型编辑器。

2.4. 创建接收节点的节点模型

1) 选择 File > New ··· 然后从下拉菜单中选择 Node Model 然后单击 OK。

2) 在编辑窗口放置一个 processor 模块和一个 bus receiver 模块,并分别改名 为 **rx_proc** 和 **bus_rx**。

图 2-15

3) 按照上图方式使用包流线连接这两个模块。其中输入包流线的索引号默认为 0, 这和 cct_rx 进程的 HB 中定义的一致。

4) 右键单击 **rx_proc** 模块,打开其属性对话框,将 **process model** 属性设置为 <**initials**>_cct_rx。

- 5) 设置节点模型接口
- (a) 选择 Interfaces > Node Interfaces。
- (b) 在 Node types 列表中,将 mobile 和 satellite 类型的 Supported 值改为 no。
- (c) 在 Attributes 列表中,将所有属性的 Status 值改为 hidden。

6)保存节点模型为<initials>_cct_rx,然后关闭节点模型编辑器。

2.5. 创建链路模型

1) 选择 File > New..., 然后从下拉菜单中选择 Link Model, 然后单击 OK。

2) 在 Supported link types 列表中,将 ptsimp 和 ptdup 类型的 Supported 值改为 no。

Link Type	Supported	Palette Icon	
ptsimp	no		
ptdup	no		
bus	yes	bus_lk	
bus tap	yes	bus_tap	

图 2-16

3) 将该链路模型保存为<initials>_cct_link,然后关闭链路模型编辑器。

2.6. 创建网络模型

- 1) 选择 File > New.., 然后从下拉菜单中选择 Project, 然后单击 OK。
- 2) 在 Startup Wizard 向导中,按照下表所示设置。

Dialog Box Name	V - 1
	value
Initial Topology	Default value: Create empty scenario
Choose Network Scale	Office ("Use metric units" selected)
Specify Size	700 x 700 Meters
Select Technologies	None
Review	Check values, then click Finish
	[<u>1</u>
(a)单击左上角的 0pen Ok	oject Palette 工具按钮
(a) 单击左上角的 Open Ok (b) 单击左上角的 Open Pa	oject Palette 工具按钮 . alette in Icon View 按钮, 切换到图标视图。
 (a) 单击左上角的 Open Ok (b) 单击左上角的 Open Pa (c) 单击 Configure Palet 	oject Palette 工具按钮 <mark>、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、</mark>
 (a) 单击左上角的 Open Ok (b) 单击左上角的 Open Pa (c) 单击 Configure Palette (d) 在 Configure Palette 	oject Palette 工具按钮 . alette in Icon View 按钮 . tte…按钮。 e 对话框中,单击 Clear 按钮,然后单击 Node Models 招
 (a) 单击左上角的 Open Ok (b) 单击左上角的 Open Pa (c) 单击 Configure Palette (d) 在 Configure Palette (e) 包含<initials>_cct_</initials> 	oject Palette 工具按钮 . alette in Icon View 按钮 . tte…按钮。 e 对话框中,单击 Clear 按钮,然后单击 Node Models 挑 rx 和 <initials>_cct_tx,然后单击 OK。</initials>
 (a)单击左上角的 Open Ok (b)单击左上角的 Open Pa (c)单击 Configure Palette (d)在 Configure Palette (e)包含<initials>_cct_</initials> (f)在 Configure Palette 	oject Palette 工具按钮 . alette in Icon View 按钮 . tte…按钮。 e 对话框中,单击 Clear 按钮,然后单击 Node Models 控 rx 和 <initials>_cct_tx,然后单击 OK。 e 对话框中,单击 Link Models 按钮。</initials>
 (a) 单击左上角的 Open Oh (b) 单击左上角的 Open Pa (c) 单击 Configure Palette (d) 在 Configure Palette (e) 包含<initials>_cct_</initials> (f) 在 Configure Palette (g) 包含<initials>_cct_</initials> 	oject Palette 工具按钮 . alette in Icon View 按钮 . tte…按钮。 e 对话框中,单击 Clear 按钮,然后单击 Node Models 招 rx 和 <initials>_cct_tx,然后单击 OK。 e 对话框中,单击 Link Models 按钮。 link, 然后单击 OK。</initials>

- (a) 选择 Topology > Rapid Configuration…。
- (b)从Configurations的下拉菜单中选择Bus,然后单击Next…。
- (c) 按照下图所示来设置 Rapid Configuration: Bus 对话框。

Node model:	my_cct_tx	-	Number:	20
Link model:	my_cct_link	-	Tap model:	my_cct_link
Placement			ant 10-02	1.07
Interpretation (€ Horizontal) Image: Provide the second secon	C⊻entical fbus ⊑⊔ett of	bus X	Head of bus -	Size Bus: 500 Tap: 100

图 2-17

(d)设置完成后,单击 OK。然后下图所示的总线网络会被创建。

图 2-18

(e)从刚创建的对象功能栏中拖一个<initials>_cct_rx 节点到网络中。

(f)在对象功能栏中单击<initials>_cct_link tap 链路,确保使用的是 tap link。

图 2-19

(g)从总线开始,连接刚放入网络中的<initials>_cct_rx节点,确保是从总线开始的。

图 3-20

(h)确认最后的网络模型如下图所示。

图 2-21

(i)将网络模型保存为<initials>_cct_network,并关闭对象功能栏,不要关闭网络模型编辑器。

2.7. 运行 ALOHA 仿真

1) 配置仿真序列

(a) 选择 Scenarios > Scenario Components > Import…。

(b) 从下拉菜单中选择 Simulation Sequence, 然后选择 cct_network-CSMA, 单击 OK。

(c)选择DES > Configure/Run Discrete Event Simulation (Advanced),则Simulation Sequence 对话框会被打开,其中包含12次仿真运行,每次仿真运行使用不同的参数。

🔣 Simulation Sequence: m	iy_cct_network-aloha 📃 🗖 🔀
File Edit Objects Simulation	Windows Help
ඩ 😂 🖬 🗰 🌋 🗊	
🖃 📝 📑 scenario (12 runs) 🔺	Office Network.*.gen.Packet Interarrival Time
- 🗹 Run 1	exponential (1000)
- Run 2	exponential (200)
- Run 3	exponential (150)
- Run 4	exponential (100)
- Run 5	exponential (80)
- Run 6	exponential (50)
- Run 7	exponential (35)
- Run 8	exponential (30)
- Run 9	exponential (25)
- 🗹 Run 10	exponential (20)
- 🗹 Run 11	exponential (18)
- 🖉 Run 12 🚽	exponential (15)
ن السليد	••
	0

图 2-22

```
(d)右键单击 scenario (12 runs)节点,选择 Edit Attributes,展开 Execution 节点,然后展开 Advanced 节点,选择 Application。单击 Application 节点,则应用面板会被打开。
```

(e) 确认 Network model 设置为<initials>_cct_network-aloha。

- (f) 单击 Outputs 节点, 然后单击 Statistics Collection 节点。
- (g) 将 Probe file 设置为<NONE>。
- (h)确认 Vector file 设置为<initials>_cct_network-aloha。这个文件收集

op_stat_scalar_write()写入的结果。每次仿真运行都会产生一个以-DES-<run#>为后缀的矢量 文件。在这个教程里面,该文件只包含了标量数据。

- (i)单击 Inputs 节点,然后单击 Global Attributes 节点,确认 max packet count 设置为 1000。
- (j) 单击 Object Attributes 节点, 在属性 Office Network.*.gen.Packet Interarrival Time 的 Value 一栏, 有 12 个值。
- (k) 单击 OK, 保存, 并关闭 Simulation Sequence 对话框。
- (1) 选择 File > Save。
- 2) 运行仿真
- (a) 确认上图中的 Run1-Run12 全部被选上。
- (b) 单击 Running Man 工具按钮。

图 2-24

(c) 随后弹出 Confirm Execution 对话框, 单击 Yes。

图 2-25

(d)随后会弹出 DES Execution Manager 对话框,显示仿真运行的进度。每次仿真运行都产生 1000 个数据包,当产生的数据包达到 1000 个,则仿真会被终止(单击 View Details 可以看到 相应的提示信息)。

cenario	- Status	Hostname	Duration	Sim Time Elapsed	Time Elapsed Tim
Run 1	Completed	localhost	3m 20s.	Os.	0:
Run 2	Completed	localhost	3m 20s.	2h 51m 49s.	Os.
un 3	Completed	localhost	3m 20s.	2h 08m 54s.	Os.
un 4	Completed	localhost	3m 20s.	1h 25m 59s.	Os.
n 5	Completed	localhost	3m 20s.	1h 08m 49s.	0s.
n 6	Completed	localhost	3m 20s.	43m 05s.	Os.
7	Launched	localhost			
8	Unstarted				
9	Unstarted				
10	Unstarted				
11	Unstarted				
12	Unstarted				
	-1				
	<u> </u>				

图 2-26

Beginning simulation of my_cct_network-aloha at 18:10:30 Fri Apr 13 2007
---Kernel: development (not optimized), sequential, 32-bit address space
---Simulation terminated by process (ss_aloha_tx) at module (top.Office
Network.node_13.tx_proc), T (10308.6), EV (100887)
max packet count reached.
---Simulation Completed - Collating Results.
Events: Total (100,889); Average Speed (925,593 events/sec.)
Time : Elapsed (0.11 sec.); Simulated (2 hr. 51 min. 48 sec.)
DES Log: 2 entries

图 2-27

(e) 仿真完成后,关闭 DES Execution Manager 对话框和 Simulation Sequence 编辑器。

2.8. 分析 ALOHA 仿真结果

1) 在项目编辑器的工具栏中单击 View Results 工具按钮,则 Results Browser 会被打开。

图 2-28

2) 单击 DES Parametric Studies 选项卡。

Results Browser		
DES Graphs DES Parametric Studies Flow Analysis Graphs		
Results for: Current Scenario	Preview	
Bg ays_cct_net		
®-⊘ aloha		
Characterization and a standard disc.		
Show results: Found in any selected riles		
Attangement: Detauk		
- Scalar Statistics		
	Series Vicarias MONE	
	Y-Series NONE	
Set As Y-Series Set As X-Series Add To Parameters	Add	Show

图 2-29

3) 展开 Scalar Statistics 节点,右键单击 Channel Throughput S,然后选择 Set as Y-Series。右边的 Preview 框会显示下图所示的曲线。

- 4) 右键单击 Channel Traffic G, 然后选择 Set as X-Series。
- 5) 单击 Show,则曲线如下图所示。

图 3-31

在理论上,ALOHA 协议的吞吐量 S 和负载 G 的关系为 S=Ge^{-2G},则最大的吞吐量为 Smax = 1/(2e) ≈ 0.18 。

6) 关闭曲线图(点击 delete)和 Results Browser 窗口。