Vol. 8, No. 2 June,2000

文章编号:1006-9941(2000)02-0075-05

高氯酸铵的热分解 ^{阴翠梅¹,孔扬辉¹. 赵凤和¹. ⁽¹⁾} 刘子如1,阴翠梅1,孔扬辉1,赵凤起1,罗 (1. 西安近代化学研究所,陕西西安710065; 2. 成都飞机公司,四川 成都 610091)

摘要:用差热分析及其与 FTIR 联用技术研究了两种粒度高氯酸铵(AP)的热分解过程,提出了 AP 晶体分解的"局部化学"现象,通过 FTIR 实时跟踪检测气体产物,并结合文献报道,提出了 AP 两个阶段分解的不同机理。

关键词:高氯酸铵(AP);热分解机理;局部化学 中图分类号: 0613; 0657; V512.2

1 引 言

高氯酸铵(AP)是复合固体推进剂常用的氧化剂, AP 的热分解对固体推进剂的燃烧过程有很大的影响。 自 1940 年至今,有关学者对它的热分解开展了广泛研 究^[1,2]。近年来 Brill^[3]教授采用快速加热、高压、原位 红外技术,跟踪检测 AP 分解的实时产物,提出了 AP 分解的某些关健步骤。本实验用热分析技术研究了 AP 晶体分解的局部化学过程,并用热重分析(TGA)与 快速扫描傅利叶变换红外(RSFTIR)联用技术,实现了 分解过程的质量损失与气体产物同时检测的实时跟 踪,探索了 AP 的热分解机理。

2 实 验

2.1 样 品

AP的两种粒度分别为 2 μm 和 80~120 μm。

2.2 设备与实验条件

差热分析(DTA): YCR -1 型压力 DTA 仪(北京 光学仪器厂),升温速率为10 ℃/min,静态空气气氛, 铝池,不加盖,试样量约为1 mg。

TGA 及其与 RSFTIR 联用: TGA 2950 型热重分析 仪(美国 TA 公司),升温速率为 10 ℃/min,氮气流动 气氛,铝制样品皿。单独的 TGA 试验,试样量约2 mg, TGA - FTIR 联用时的试样量约为7 mg。

收稿日期: 2000-01-31; 修回日期: 2000-04-14

作者简介: 刘子如(1940-), 研究员, 博导, 从事火炸药热化 学、热分解动力学的热分析研究。

FTIR 分析:美国 Nicolet 750 型分析仪,原位气体槽 及与 TGA 连接的产物气体流入管道被加热保持在约 185 ℃,载气流速为100 ml/min,波数分辨率为4 cm⁻¹。

3 结果与讨论

文献标识码: A

3.1 AP 分解的 DTA 与 TG - DTG 分析

两种粒度 AP 的 TG - DTG 和 DTA 曲线(图1和 图 2) 表明大粒度 AP 的热分解过程与小粒度不同。大 粒度 AP 有两个分解阶段,第一阶段 DTA 峰温为 313 ℃, DTG 峰温为 306.5 ℃, 失重约22.0%; 第二阶 段 DTA 峰温为 365.8 ℃, DTG 峰温为 346.9 ℃。小粒 度 AP 没有发现第一阶段的明显分解,只有第二阶段 的分解,其峰温与大粒度第二阶段的基本相符,DTA 和 DTG 上分别为 364.3 ℃和 349.8 ℃。 DTA 上 246~ 246.5 ℃的吸热峰是斜方晶系转变为立方晶系的转晶峰。

为进一步了解不同粒度对 AP 分解过程的影响, 我们进行了 AP 转晶(246 ℃)前 230 ℃下的等温热重 分析,结果见图 3。从图 3 可知,大粒度 AP 在 20 min 后开始失重,至62 min 这一过程完成,失重约30%。 62 min 后无明显失重,说明在恒温过程中大粒度 AP 完成了第一(低温)阶段分解。小粒度 AP 直至 90 min 还没有明显分解,只失重了约3%,这可能是 AP 少量 升华失重。观察二者的固体残渣,发现小粒度 AP 外 观与原始样品几乎无差别,其 DTA 曲线与原样品相 同; 大粒度 AP 的残渣为多孔、疏松白色固体,体积有 所膨胀,其DTA曲线与原样品有所不同,低温分解峰已 消失。以上事实再次证明粒度对 AP 热分解的影响。

图 1 AP 分解的 TG - DTG 曲线 Fig. 1 TG - DTG curves for decomposition of AP

图 2 AP 分解的 DTA 曲线(0.1 MPa) Fig. 2 DTA curves of decomposition for AP(0.1 MPa)

3.2 TGA - FTIR 联用分析

大粒度 AP 试样在 TGA 2950 型热重分析仪上产 生的气体经一加热管道(保温约185 ℃)由载气 N,带 入保持同样温度的 IR 气体原位池中。以光谱采集速 率 16 files · min[□] 跟踪测定试样在 TGA 上的分解放气 过程,所得的 TGA - FTIR 联用分析图中的 FTIR 图见 图4和图5。

图 4 是分解气体产物及其红外吸收强度随温度变 化的三维图。图 5 是最主要的气体产物 N₂O 红外吸 收强度及其随温度变化图。图 4 表明, - N, O 在 2 222 ~2 254 cm⁻¹和1 260~1 330 cm⁻¹区间的吸收带随温 度的增加而增加。图 5 表明, - N₂O 的红外吸收强度

图 3 两种粒度 AP 在 230 ℃ 的恒温 TG 曲线 Fig. 3 Isothermal TG curves of two particles size AP at 230 °C

出现两个极大值。这与图 1a 中 DTG 曲线的两阶段分 解是完全一致的。分解的第一阶段 - NO 在 1 908 cm⁻¹的吸收不明显,而在第二阶段可检测到它的存 在。2 700~3 012 cm⁻¹之间的 HCl 两个区域的吸收强 度在 AP 分解的第一阶段(TG - DTG 上 331 ℃之前) 没有检测到,但第二阶段,该吸收带明显地出现在图 4 上(约340℃以后)。这些结果说明 AP 的分解除了生 成H₂O外,在红外可检测到的气体中在第一阶段有 N₂O 和少量 NO,在第二阶段有 N₂O₂NO 和 HCl_o

3.3 AP 分解机理分析

3.3.1 AP 分解的局部化学

人们很早就认为 AP 的热分解分低温和高温两个 阶段,而且分解机理不同^[4-6]。

从 TG - DTG 的结果可看出大粒度 AP 的热分解 存在两个过程,即第一(低温)阶段和第二(高温)阶 段。而小粒度 AP 的第一阶段不明显,只有第二阶段。

我们认为第一阶段的分解是在 AP 晶体表面的局 部位置上进行的,即所谓"局部化学"。AP 晶体表面 上存在着缺陷、裂纹等力场不饱和点,这些点就是 AP 固体分解潜在的活化中心。这些中心形成反应"核", 于是开始了分解的过程,随着反应进行,"核"沿着缺 陷或裂纹不断发展——"核成长"。大晶体本身存在 着较大的内应力,反应产物的积累加剧了缺陷和裂纹 的发展,增大了内应力,促使大晶体破裂生成较小晶 体,反应在新形成的更大比表面的晶体上进行,这就是 第一阶段的分解反应。

但是由于AP分解的第一阶段是AP经质子转移 离解生成NH₃与HClO₄:

 $NH_4ClO_4 \implies NH_3(g) + HClO_4(g)$

低温分解反应是吸附在 AP 表面上的 NH₃(g)与 HClO₄(g)的反应。由于低温下吸附着的 NH₃ 不能全

部由 HClO₄ 的分解产物氧化(见下文),所以随着分解 过程的进行,NH₃ 不断地覆盖晶体表面。若 NH₃ 将表 面上全部的活化中心(反应中心)覆盖,则分解过程停 止。所以 AP 分解的 TG - DTG 曲线上或放出气体的 IR 吸收强度与温度关系图上有明显的两个阶段(见图 la 和图 5)。

NH₃的上述"去活"作用是由于它抑制了质子转移过程,同时 HClO₄ 降解生成的 H₂O 也会抑制 AP 的

分解过程^[7]。

78

当温度继续升高时,由于 NH。的解吸,使潜在的 反应中心重新活化,或者这时 AP 部分液化,反应在整 个凝聚相中进行,不存在"局部化学"过程,反应因放 热变得较为剧烈。这就是 AP 分解的第二阶段。

细颗粒 AP 的内应力小,生成产物不足以使 AP 颗粒破裂形成更小的颗粒。所以初期分解的 NH₃ 很快覆盖在小颗粒表面上,以致于看不到细颗粒 AP 有明显的第一阶段的分解,而只有第二阶段的分解。

3.3.2 AP 分解的机理

(1) 第一阶段

人们普遍认为 AP 的初始分解是质子从 NH₄⁺ 转 移到 ClO₄⁻ 生成 NH₃ 和 HClO₄ 的离解过程^[4,8-10],存 在着升华与分解两个竞争过程。Brill^[3]认为在明显放 热分解之前从薄层 AP 反应快速分解逸出的气体有 HClO₄,而没有 NH₃。他认为这是由于 NH₃ 被氧化成 NO₂,N₂O 和 H₂O 之故。此外,我们认为还有部分 NH₃ 被吸附在晶体表面上成为"去活剂"。N₂O 的生成是 由于 HNO 的自身反应: 2HNO — N₂O + H₂O。AP 分 解第一阶段 IR 可检测到的主要气相产物是 N₂O,此外 还有少量 NO,这已为许多实验所证实^[3-6]。本实验的 第一阶段中未发现 HCl 的生成,这也被 Brill^[3]所证 实。文献[3]中还指出 AP 分解产物随温度而变化,在 240 ℃以下,氯以 Cl₂ 放出,而在高温下,则以 Cl₂ 和 HCl 的形式放出。而且,HCl 在分解产物中的含量随 着温度的升高而增加。

根据本实验的结果和上述分析,我们认为 AP 的 第一阶段的分解是固 - 气多相反应。首先是离解与升 华:

$$\mathrm{NH}_4^+ + \mathrm{ClO}_4^- \Longrightarrow \mathrm{NH}_3(\mathrm{s}) + \mathrm{HClO}_4(\mathrm{s})$$

$$\implies \mathrm{NH}_3(g) + \mathrm{HClO}_4(g) \qquad (1)$$

接着是在气相中 HClO₄(g)的一系列降解过程及 其产物对部分 NH₃ 的氧化反应:

$$2\text{HClO}_4 \longrightarrow \text{ClO}_3 + \text{ClO}_4 + \text{H}_2\text{O}$$
(2)

$$ClO_4 \longrightarrow ClO_3 + 0$$
 (3)

$$ClO_2 \longrightarrow ClO + 2O$$
 (4)

$$NH_2 + 20 \longrightarrow HNO + H_2O$$
 (5)

$$2Cl0 \longrightarrow O_2 + Cl_2 \tag{6}$$

由于部分 NH₃ 被吸附在晶体表面上,故进入气相的 NH₃ 较少,而且 O 原子在与 ClO 对 NH₃ 氧化竞争中占优势,ClO 在自身反应中生成 Cl₂ 而消耗,因而生成 HCl 的关键性中间反应: NH₃ + ClO \longrightarrow NH₂ +

HClO 未能进行。

反应(5)生成的 HNO 与 HClO₄ 可进行反应:

HClO₄ + HNO → ClO₃ + NO + H₂O (7) 但反应(7)在这个阶段很弱,这可由本实验中 AP

分解第一阶段检测不到 NO 或很少而证实。其原因可能是 HNO 和 NO 自身或相互之间可反应生成 N₂O:

$$2HNO \longrightarrow N_2O + H_2O \tag{8}$$

$$2NO \longrightarrow N_2O + O \tag{9}$$

$$HNO + NO \longrightarrow N_2O + H_2O \qquad (10)$$

反应(8)消耗了 HNO,使(7)变得不重要,(9)与 (10)的进行也消耗了 NO。Brill^[3]也证明了,在 AP 放 热分解前没有获得可检测量的 NO。因此在第一阶 段,中间产物 HClO₄ 除自身降解消耗一部分外,可能 存在一个积累过程。曾有报道^[11]证实 HClO₄ 的含量 在240 ℃时达到极值。

(2) 第二阶段

在 AP 分解第二(高温)阶段,由于 NH₃ 的解吸, NH₃ 被 HClO₄ 降解产物的氧化反应加剧,放热分解明 显占优势,此外,随着温度的升高,分解产物的积累使 AP 熔点下降,出现部分液化,因此不仅在气相中进行 HClO₄ 氧化 NH₃ 的反应,而且也在凝聚相表面上发生 AP 的分解过程。Beckstead 等人^[8]证实了在 AP 燃烧 表面上有熔化液层存在。

另一方面,由于 NH₃ 氧化生成物 HNO(反应(5)) 的增加,反应(7)变得剧烈,出现了 NO 的积累。因此 在 TGA – FTIR 联用中可以检测到 NO 的存在,而且随 温度(时间)的增加而提高。与此同时,也检测到 HCI 并且随温度升高而增加,因此可以认为,在第二阶段的 分解中除了存在第一阶段所有的反应过程,且反应 (5)和(7)大大增强外,还存在下述过程:

 $NH_3 + ClO \longrightarrow NH_2 + HClO$ (11)

- $2\text{ClOH} + \text{Cl}_{2} \longrightarrow 2\text{HCl} + 2\text{ClO}$ (12)
 - $NH_2 + 0_2 \longrightarrow HNO + OH$ (13)

$$ClO + OH \longrightarrow HCl + O_{2} \tag{14}$$

上述反应(1)~(14)是 AP 第二(高温)阶段的可能分解步骤。

参考文献:

- [1] Shadman Y F. Decomposition kinetics of rocket oxidizer ammonium perchlorate [R]. AD 746728, 1972.
- [2] Pearson G S. Role of catalysts in the ignition and combustion of solid propellants [J]. Combust. Scie. Techno.,

1971, 3(4): 155 - 163.

- [3] Brill T B, Brush P J, Patil D G. Thermal decomposition of energetic materials. 60 Major reaction stages of a simulated burning surface of ammonium perchlorate [J]. Combustion and Flame, 1993, 94: 70 - 76.
- [4] Bircumshaw L L, Newman B H. The thermal decomposition of ammonium perchlorate. I. Introduction experimental analysis of gaseous products and thermal decomposition experiments [J]. Proc. Roy. Soc., 1954, A227: 115.
- [5] Rosser W A, Inami S H. Thermal decomposition of ammonium perchlorate. Combustion and Flame, 1968, 12(5): 427.
- [6] Jacobsetc P W M. Mechanism of the decomposition of am-

monium perchlorate [J]. Combustion and Flame, 1969, 13(4): 419 - 430.

- [7] Rosser W A. Kinetics of decomposition of liquid ammonium nitrate[J]. J. Phys. Chem. ,1963,67: 1753.
- [8] Beckstead M W, Hightower J D. Surface temperature of deflgrating ammonium perchlorate crystals [R]. AIAA J. 1967,5(10): 1785.
- Land J E. A study of the decomposition mechanism of ammonium perchlorate [R]. AD 466956,1965.
- [10] Jacobs P W M. Sublimation of ammonium perchlorate [J]. J. Phys. Chem. ,1968 ,72 : 202 - 207.
- [11] Osada H, Sakamoto E. Thermal decomposition of ammonium perchlorate[J]. Kogyo Kayaku, 1963, 24(5):236.

The Thermal Decomposition of Ammonium Perchlorate

LIU Zi-ru¹, YIN Cui-mei¹, KONG Yang-hui¹, ZHAO Feng-qi¹, LUO Yang¹, XIANG Hai²

(1. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China;

2. Chengdu Airplane Manufacture Company, Chengdu 610091, China)

Abstract: The thermal decompositions of two kinds of $NH_4ClO_4(AP)$ with different grain size were investigated by DTA and TC – FTIR coupling. It is proposed that the decomposition of AP crystal obeys the process of "topochemistry" and it is explained that there are two steps in the decomposition of the coarse grain size. On the basis of the gaseous products identified by real-time and rapid-scan FTIR and reported results in the literatures, the different mechanisms of the two steps during AP decomposition process are suggested.

Key words: ammonium perchlorate(AP); decomposition mechanism; topochemistry