Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

www.rsc.org/xxxxxx

Review

Graphitic carbon nitride based nanocomposites: A review

Zaiwang Zhao^a, Yanjuan Sun^a, Fan Dong^{a*}

^a Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, 400067, China.

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Abstract: Graphitic carbon nitride (g-C₃N₄), as an intriguing earth-abundant visible light photocatalyst, possesses a unique twodimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C₃N₄ suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C₃N₄ could ¹⁰ act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in photocatalytic mechanism and process, six primary systems of g-C₃N₄-based nanocomposites can be classified and summarized. Namely, the g-C₃N₄ based metal-free heterojunction, g-C₃N₄/single metal oxide (metal sulfide) heterojunction, g-C₃N₄/composite oxide, g-C₃N₄/halide heterojunction, g-C₃N₄/noble metal heterostructures, and g-C₃N₄ based complex system. Apart from the depiction of fabrication methods, heterojunction structure and multifunctional application of the g-C₃N₄-based nanocomposites. The unique functions of p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, super conductivity, etc., are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C₃N₄-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, ²⁰ and super capacitor. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C₃N₄-based advanced nanomaterials.

* To whom correspondence should be addressed. Email: dfctbu@126.com (F. Dong). Tel.: +86-23-62769785-605; Fax: +86-23-62769785-605.

This journal is © The Royal Society of Chemistry [year]

Review

Cite this: DOI: 10.1039/c0xx00000x

1. Introduction

Nanoscale

Over the past decades, the growing awareness of environmental protection and energy conservation has stimulated intensive research on solar energy utilization.¹ In the domain of pollutants ⁵ elimination and solar energy conversion, semiconductor photocatalysis has emerged as one of the most fascinating technologies²⁻⁵. Nevertheless, the wide band gap and low solar-

- energy utilization efficiency remain the "bottleneck" of the photocatalysts to satisfy the requirement of applications in a $_{10}$ practical way. For instance, the traditional TiO₂ is limited for its
- poor performances associated with visible light application. As a result, it is urgent to seek for efficient visible-light-driven (VLD) photocatalysts. For this objective, various modified TiO₂ and TiO₂-alternative photocatalysts have been fabricated.⁶⁻¹⁷
- ¹⁵ Currently, it is still a challenge to design new photocatalysts that are abundant, stable and facile in fabrication besides high visiblelight performance.

In the search for robust and stable VLD semiconductor photocatalysts, a polymeric semiconductor, graphitic carbon

- ²⁰ nitride (g-C₃N₄), has recently attracted tremendous attention. The heptazine ring structure and high condensation degree enable metal-free g-C₃N₄ to possess many advantages such as good physicochemical stability, as well as an appealing electronic structure combined with a medium-band gap (2.7 eV).¹⁸ These
- ²⁵ unique properties make g-C₃N₄ a promising candidate for visible light photocatalytic applications utilizing solar energy. In addition, g-C₃N₄ is abundant and easily-prepared via one-step polymerization of cheap feedstocks like cyanamide,^{18,19} urea,²⁰⁻²² thiourea,^{23,24} melamine ²⁵⁻²⁷ and dicyandiamide.^{28,29} Nevertheless,
 ³⁰ pure g-C₃N₄ suffers from shortcomings such as rapid
- ³⁰ pure g-C₃N₄ surfaces from snortcomings such as rapid recombination of photo-generated electron-hole pairs, small specific surface area and low visible light utilization efficiency.²¹⁻²⁹ Consequently, the exploration of facile and dependable strategies to synthesize the modified g-C₃N₄-based photocatalysts
- ³⁵ with improved physicochemical properties and high photocatalytic activities is of increasing requirement. The g-C₃N₄ has a unique two-dimensional layered structure, which is favorable for hybridizing with other components. Very recently, several approaches have been employed to enhance the visible
- ⁴⁰ light photocatalytic performance of g-C₃N₄, such as formation of surface coupling hybridization utilizing TaON,³⁰ Bi₂WO₆,³¹ graphene,³² construction of mesoporous structure,³³ doping with metal or nonmetal species Fe,³⁴ Ag,³⁵ Au,³⁶ Pd,³⁷ S,³⁸ B³⁹ and P⁴⁰ and sensitizing by organic dyes.⁴¹ Among these approaches,
- ⁴⁵ formation of heterostructures demonstrates a great potential to promote the photocatalytic performance of $g-C_3N_4$ because the electron-hole pairs can be efficiently separated, and charge carriers could transfer across the interface of the heterostructure to restrain the recombination.
- In a coupling process, $g-C_3N_4$ based heterostructures not only can be formed by combining with visible light excited photocatalytic semiconductor materials with a narrow band gap such as CdS,⁴² Bi₂WO₃,⁴³ BiOI⁴⁴), but also can combine with UV

excited photocatalysts with large band gap (such as as TiO₂,⁴⁵ ⁵⁵ ZnO,⁴⁶ ZnWO₄⁴⁷), which can largely broaden the application of the g-C₃N₄ based nanocomposites. Neverthess, not all materials can couple with $g-C_3N_4$ to form a heterostructures. The most important prerequisite condition to form an effective visible light excited g-C₃N₄ based heterostructure is that the candidates should 60 have an appropriate band structure which is beneficial to create a coupling hybridization. Besides, the difference of chemical potential between the coupling semiconductor A and B generates band bending at the interface of junction. The band bending induces a built-in field, which impels the photogenerated 65 electrons and holes to transfer in opposite directions, resulting in a spatially efficient separation of the electrons and holes pairs on different sides of heterojunction.48,49 In addition, the crystal structure in the junction domain of the heterostructure is also important in strengthening the quantum efficiency of the 70 photocatalyst. A distinction in lattice spacing between two semiconductors could probably cause lattice mismatch. The lattice mismatch at the interface may cause defects, which will

capture the photo-generated electronic carriers and thus inhibit the diffusion of electrons and holes. Thus, the formation of g- $_{75}$ C₃N₄ based heterostructures is an effective approach to enhance charge separation efficiency for improved photocatalytic performance.

Recently, numerous researches have been made to couple g-C₃N₄ with various semiconductors to enhance the photocatalytic 80 activities.^{36,50-51} For instances, Wang and co-workers firstly reported TiN/g-C₃N₄ multi-layers hybridization by using a dualfacing-target magnetron sputtering method at room temperature, and exhibited favorable properties in photocatalytic applications in 2008.50 This pioneering work has stimulated tremendous 85 interests on the fabrication, modification, and application of g-C₃N₄-based semiconductor photocatalysts. Yan et al. successfully developed g-C₃N₄/TaON organic-inorganic composite photocatalyst with visible-light response by a milling-heat treatment method that demonstrated an enhanced photocatalytic 90 performance for photodegradation of Rhodamine B (RhB) in aqueous solutions.⁵¹ Di et al. prepared the Au/g-C₃N₄ nanocomposites photocatalyst by depositing gold nanoparticles on the surface of a g-C₃N₄ semiconductor to generate metalsemiconductor junctions, which showed well-improved ⁹⁵ photocatalytic hydrogen evolution with visible light.³⁶

Now that significant advances have been made on the g-C₃N₄based photocatalysts in recent years, we believe that a comprehensive review on this subject is necessary to accelerate further developments in this exciting research domain. This 100 review article is focused on recent progress in the design, fabrication, mechanistic understanding, and the potential applications of these g-C₃N₄-based nanocomposites in various realms such as photodegradation of nitrogen oxides, organic contaminants photodegradation, photocatalytic hydrogen 105 evolution, conversion carbon dioxide to methane fuel, oxygen reduction reaction (ORR), and photoelectrochemical determination of Cu^{2+} . Eventually, some concluding remarks and invigorating perspectives on the current situation and further prospects on the g-C₃N₄-related researches are presented, which may promote the understanding and large scale application of the ⁵ g-C₃N₄-based nanocomposites.

2. g-C₃N₄-based nanocomposites

2.1 Preparation of g-C₃N₄

- Generally, carbon nitride materials fabricated by directly ¹⁰ condensation of nitrogen-containing organic precursors (for example urea, thiourea, melamine, dicyandiamide, cyanamide, guanidine hydrochloride) are bulk materials with a small surface area, normally below 10 m²/g. For practical applications of the materials in domains such as a single catalyst or a support
- ¹⁵ substrate of co-catalysts (such as heterojunction), the introduction of well-controlled porosity at the nanoscale in the bulk carbon nitride is mandatory to strengthen its utilizations to a large scale. And it is worth noting that formation of mesoporous and augment of specific surface area are crucial to fine-tune the physical provide an end in the substantial physical physical
- 20 physicochemical properties and improve the photocatalytic performance. 52 As previously reported, the mesoporous g-C_3N_4 (mpg-C_3N_4) was firstly obtained by nanocasting/replication of mesoporous silica matrices, which were famous for the generation of the corresponding carbon nanostructures. 53,54,55
- ²⁵ Inspired by this hard template method, tremendous attempts were stimulated to explore new strategies for g-C₃N₄ modification, such as soft template method, ⁵⁶⁻⁵⁸ ultrasonic dispersion method, ⁵⁹ acidic solution impregnation^{60,61} and chemical functionalization. ⁶²⁻⁶⁶ As universally applied, methods mentioned
- ³⁰ above were good as a proof-of-principle in tailoring the texture and surface chemical properties, as well as the electronic properties.

2.2 Design considerations for g-C₃N₄-based nanocomposites

- To develop effective $g-C_3N_4$ -based nanocomposites working for enhanced performance, several pivotal requirements must be considered. First of all, the semiconductor light harvesting antenna must have a narrow band gap to allow for efficient absorption of the solar spectrum. Second, there must be a driving
- ⁴⁰ force boosting charge separation and accelerating the transportation process. Furthermore, the semiconductor should possess adequate redox potential for the desired photochemical reactions. Ultimately, a mechanism should be accompanied to guarantee the photochemical stability of the photocatalyst. It is
- ⁴⁵ unlikely that a single material system could satisfy all these requirements, while the nanocomposites photocatalysts may have the potential to accomplish these goals. In general, nanocomposites photocatalysts could offer several potential merits: (1) Cocatalyst effect. The integration with a proper
- 50 cocatalyst can lower the redox overpotential at the respective active sites; (2) Strengthened light absorption. For instance, semiconductors with small band gap possessing high absorption coefficiency can be utilized to functionalize (or sensitize) semiconductor materials with large band gaps; (3) Efficient 55 charge separation and transportation. A p-n
- ss charge separation and transportation. A p-n (semiconductor/semiconductor heterostructures) or the Schottky junction (metal/semiconductor heterostructures) with built-in electrical potential can be constructed in heterogeneous

- photocatalysts to effectively expedite electron-hole pair separation and transportation; (4) Decent stability. If the active sites and function groups on the semiconductor surface can be protected through proper surface passivation, it is possible to improve the stability.
- In consideration of the diverse mechanisms of different g-C₃N₄ 65 based nanocomposites in photocatalytic reactions, g-C₃N₄ based heterojunctions were summarized and classified into six main different combination systems. Below we review the recent progress on the g-C₃N₄ based metal-free heterojunction, goxide (metal heterojunction, g-C₃N₄/metal sulfide) 70 C₃N₄/inorganic acid salts composites, g-C₃N₄/halide heterojunction, g-C₃N₄/noble metal heterostructures, and g-C₃N₄ based multi-component heterojunction for improved photocatalysis.

75 **3. Categories of g-C**₃N₄ based nanocomposites 3.1 g-C₃N₄ based metal-free layered heterojunction

To our knowledge, metal-free materials owing to various advantages such as low-cost and environmentally amicable, have stimulated multitudinous attention because of their great potential 80 in solving environmental and energy problems. Hence, it is extremely attractive to construct hybridized materials via coupling two metal-free materials. For example, graphene, a twodimensional macromolecular sheet of carbon atoms, has preferentially attracted much attention due to its outstanding 85 mechanical, thermal, easily-obtained, and electrical properties. And it has been widely used in nanoelectronics, biosensing, capacitors, and catalysis domains.^{67,68} In particular, it possesses an extremely high specific surface area ($\sim 2600 \text{ m}^2/\text{g}$)⁶⁹ and marvelous thermal conductivity (~5000 W m⁻¹K⁻¹), guaranteeing ⁹⁰ a superb mobility of charge carriers (200 000 cm² V⁻¹s⁻¹). Therefore, the merits mentioned above made graphene as the first metal-free candidate, and preferentially used to construct layered graphene/g-C₃N₄ nanocomposites Sun et al prepared graphene/g- C_3N_4 nanoheterojunction by absorption-calculation method, 95 which demonstrated apparently enhanced conductivity and electrocatalytic performance on oxygen reduction reaction (ORR).⁷⁰ Xiang et al also successfully obtained graphene/g-C₃N₄ nanocomposites by a combined impregnation-chemical reduction firstly utilized this graphene/g-C₃N₄ strategy, and 100 nanoheterojunction in visible-light photocatalytic H₂-production containing Pt as a cocatalyst.³² Fig. 1a and 1b show a typical TEM image of graphene oxide and graphene/g-C₃N₄ nanocomposites. In comparison to graphene oxide, the graphene/g- C_3N_4 composite possessed a more compact structure 105 due to the fact that g-C₃N₄ was sandwiched between graphene sheets through polymerization of melamine molecules preadsorbed on the GO sheets. In the aforementioned trials, the high H₂-production activity over the graphene/g-C₃N₄ nanocomposites under visible-light irradiation can be achieved. The mechanism of ¹¹⁰ the acvitiv enhancement is illustrated in Fig. 1c.

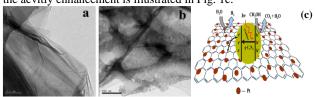
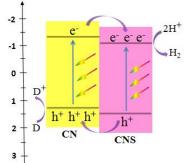


Fig. 1 (a) TEM images of graphene oxide and (b) the graphene/g- C_3N_4 nanocomposites; (c) Proposed mechanism for the enhanced electron transfer in the graphene/g- C_3N_4 composites (reprinted with permission from ref. 32. Copy right (2011) American Chemical Society).

- $_{\rm 5}$ Under visible-light illumination, electrons (e⁻) of g-C₃N₄ are excited from the valence band (VB) to the conduction band (CB) , generating holes (h⁺) in the VB. Generally, these charge carriers quickly recombine and only a section of electrons are injected into the Pt nanoparticles due to a Schottky barrier. 71,72 The
- ¹⁰ injected electrons accumulate on the Pt nanoparticles and can effectively reduce H_2O (or H^+) to produce H_2 , while holes accumulate at the valence band of $g-C_3N_4$ and can react with methanol as a sacrificial reagent. However, when $g-C_3N_4$ is immobilized on the surface of graphene sheets to form the
- ¹⁵ layered composites, these photogenerated electrons on the CB of $g-C_3N_4$ could tend to transfer to graphene sheets due to their excellent electronic conductivity, restraining the electron-hole pair recombination.⁶⁸ The transferred electrons will accumulate on the Pt nanoparticles loaded on the graphene sheets via a ²⁰ percolation mechanism⁷³ and then participate in H₂ generation.
- The major reaction steps in this photocatalytic water-splitting mechanism under visible-light illumination are summarized by the following Eqs. (1)- (4).


graphene/g-C₃N₄ \xrightarrow{hv} graphene (e[•])/g-C₃N₄ (h⁺) (1) graphene (e[•])+ Pt \rightarrow graphene + Pt (e[•]) (2)

25 graphene (e⁻)+ Pt \rightarrow graphene + Pt (e⁻) Pt (e⁻)+2H⁺ \rightarrow Pt + H₂ (3)

 $g-C_3N_4$ (h⁺)+CH₃OH +6OH \rightarrow $g-C_3N_4+CO_2+5H_2O$ (4)

And to date, a cross-linked $g-C_3N_4/rGO$ (reduced graphene oxide) nanocomposites with tunable band structure was

- ³⁰ synthesized by Li et al, which demonstrated well-enhanced visible light photocatalytic activity.⁷⁴ Later, Wang et al noticed that a new class of ternary g-C₃N₄/Graphene/S nanoheterojunction was prepared by wrapping reduced graphene oxide and g-C₃N₄ sheets on crystals of cyclooctasulfur (α-S8) in
 ³⁵ bacterial inactivation under visible-light.⁷⁵ Except for the aforementioned achievement, a large numbers of attempts have been paid to explore novel materials coupling with g-C₃N₄ for broadening the applications of g-C₃N₄-based coupling heterojunction. In summary, these excellent g-C₃N₄ based non-
- ⁴⁰ metal nanoheterojunction are MWNTs (multi-walled carbon nanotubes)/g-C₃N₄,^{76,77} polypyrrole/C₃N₄,⁷⁸ P/C₃N₄,⁷⁹ CN/CNS,⁸⁰ g-C₃N₄(from thiourea)/g-C₃N₄(from urea),⁸¹ C₆₀/g-C₃N₄, as shown in Table 1.⁸²

45 Fig. 2 Schematic illustration of organic heterojunction formed between CN and CNS. (CN refers to g-C₃N₄, CNS refers to sulfur-mediated CN, D=donor)

Significantly, Wang et al. obtained two types of host-guest CN/CNS heterojunctions (Fig. 2) with a facile band alignment by ⁵⁰ the surface-assisted polymerization: CNS–CN (CN serving as the host) and CN–CNS (CNS serving as the host).⁸⁰ CN/CNS isotype heterojunctions were obtained based on the band alignment between CN and CNS, owing to the slight difference in their electronic band structures. As an amazing result, these two types ⁵⁵ of CN/CNS heterojunctions mentioned above demonstrated conspicuous enhancement in the photocatalytic activity and stability for hydrogen evolution.

Inspired by Wang' work, the layered g-C₃N₄/g-C₃N₄ metal-free isotype heterojunction (Fig. 3a) was produced by treating the 60 molecular composites precursors of urea and thiourea under the same thermal conditions. The molecular structure of this CN-T/CN-U heterojunction is illustrated in Fig. 3b. This isotype heterojunction was constructed on the basis that the g-C₃N₄ prepared from separate urea and thiourea has different band 65 structure. Upon visible light irradiation, the photogenerated electrons transfer from $g-C_3N_4$ (thiourea) to $g-C_3N_4$ (urea) driven by the conduction band offset of 0.10 eV, whereas the photogenerated holes transfer from $g-C_3N_4$ (urea) to $g-C_3N_4$ (thiourea) driven by the valence band offset of 0.40 eV.⁸¹ These 70 two charge transfer processes are beneficial for overcoming the high dissociation barrier of the Frenkel exciton and stabilizing electrons and holes. The redistribution of electrons on one side of the heterojunction (CN-U) and holes on the opposite side (CN-T), could reduces the electron/hole pairs recombination as well as 75 prolonged lifetime of charge carriers, resulting in exceptionally high photocatalytic capabiliy. These two successful works demonstrated that rational design and construction of isotype heterojunction could open up a new avenue for the development of new efficient visible-light photocatalysts.

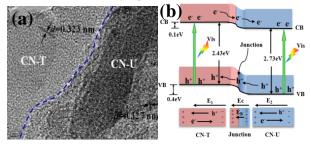


Fig. 3 (a) TEM images of CN-TU; (b) Schematic illustration of electronhole separation and transport at the g- C_3N_4/g - C_3N_4 heterojunction interface and in both semiconductors: E_C is the contact electric field for the two components; E_B is the potential barrier in the interfacial depletion so layer ($E_B < E_C$ during the photocatalytic reaction); E_1 and E_2 are the internal electric fields induced by the redistribution of the spatial charges in CN-T and CN-U, respectively. CN-T refers to g- C_3N_4 from thiourea and CN-U refers to g- C_3N_4 from urea. (reprinted with permission from ref. 81. Copyright (2013) American Chemical Society).

 $\label{eq:constraint} \mbox{Table 1 Photocatalytic properties of g-C_3N_4$ based metal-free heterojunction composite photocatalysts}$

Composite photocatalyst	Mass or molar fraction of g-C ₃ N ₄	Typical parameters of photocatalytic experiments	·	Reference photocatalyst; photocatalytic activity	Enhancement factor over the reference photocatalyst	Reference
Graphene / g-C ₃ N ₄	Mass:99 %	Photocatalytic H ₂ evolutior under visible light; co- catalyst: Pt; sacrificial reagent: methanol	h RH ₂ : 451μmol h ⁻¹ g ⁻¹	g-C ₃ N ₄ : 147μmol h ⁻¹ g ⁻ Graphene: no data	3.07 1.21	32
reduced graphene oxide (rGO) /g-C ₃ N ₄	Mass:98.4% 97.5% 94.9% 80.4% Mass:98.4% 97.5% 94.9% 80.4%	rhodamine B (RhB) under visible light Decomposing 4-nitrophenol under visible light	84%, in 75min 100%, in 75min 52%, in 75min 36%, in 75min No data, in150 min No data, in150 min No data, in150 min No data, in150 min	g-C ₃ N ₄ : 80% rGO: no data g-C ₃ N ₄ : no data rGO: no data	1.05 1.25 0.65 0.45 No data No data	74
multi-walled carbon nanotubes (MWNTs)/g-C ₃ N ₄	Mass: 98%	Photocatalytic H ₂ evolution under visible light; co-catalyst: Pt; sacrificial reagent: methanol	RH₂: 7.58µmol h ⁻¹	g-C₃N₄: 2.03µmol h ⁻¹ MWNTs: no data	3.7 No data	76
multi-walled carbon nanotubes (CNT) /white C ₃ N ₄	Mass:no data Mass:no data	methyl orange (MO) under visible light	89.7% , in 3 h 85.4%, in 3 h	white C ₃ N ₄ : no data CNT: no data white C ₃ N ₄ : no data CNT: no data	No data No data No data No data	77
Polypyrrole (PPy) /g-C ₃ N ₄	Mass:98.5% 99.5% 97.5% 96%	light Photocatalytic H ₂ evolution under visible light; co-	RH ₂ :15.4μmol h ⁻¹ no data no data no data	g-C ₃ N ₄ : no data PPy: no data	No data No data No data	78
Red phosphor (r-P) /g-C ₃ N ₄	Mass: 5% 30%	Photocatalytic H ₂	RH ₂ : 310µmolh ⁻¹ g ⁻¹ 1000 µmolh ⁻¹ g ⁻¹	$g-C_3N_4$: 340µmolh ⁻¹ g ⁻¹ r-P:22µmolh ⁻¹ g ⁻¹	0.91;14.09 2.94;45.45	79
Red phosphor (r-P) /g-C ₃ N ₄	Mass: 30%	Pt; sacrificial reagent: Ascorbic acid Photocatalytic CO ₂ conversion into valuable hydrocarbon fuel (CH ₄) in the presence of water vapor	295µmolh ⁻¹ g ⁻¹	g-C ₃ N ₄ : 107μmolh ⁻¹ g ⁻¹ r-P:145μmolh ⁻¹ g ⁻¹	2.76 2.03	
$\begin{array}{l} RGO/\ g\text{-}C_3N_4/\\ \alpha\text{-}S_8\\ g\text{-}C_3N_4/RGO\ /\\ \alpha\text{-}S_8 \end{array}$	Mass: 30%	Bacterial Inactivation (E.coliK-12) under Visible-Light	No data	g-C ₃ N ₄ : no data RGO: no data α -S ₈ : no data	No data No data No data	75
g-C ₃ N ₄ /C ₆₀	Mass: 99.5% 99% 98%	Decomposing (RhB) under visible light	87%, in 60min 97%, in 60min 84%, in 60min	g-C ₃ N ₄ : 54% C ₆₀ : no data	1.61;1.80;1.56 No data	82
CNS/CN-2 CN/CNS-2	Mass: no data	Photocatalytic H ₂ evolution under visible light; co- catalyst: Pt; sacrificial reagent: no mention	No data	CN: no data CNS: no data	11 2.3	80
$g-C_3N_4/g-C_3N_4$	Mass: no data	Decomposing NO under visible light	47.6%, in 30min	g-C ₃ N ₄ :(T) 27.3% g-C ₃ N ₄ :(U) 31.7%	1.74 1.50	81
graphene/g-C ₃ N ₄	Mass: no data	Conductivity and electrocatalytic performance on oxygen reduction reaction (ORR)	No data	g-C ₃ N ₄ :no data graphene:no data	No data No data	70

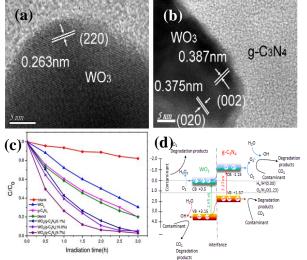
$3.2 \hspace{0.2cm} g\text{-}C_{3}N_{4}\!/single \hspace{0.2cm} metal \hspace{0.2cm} oxide \hspace{0.2cm} (metal \hspace{0.2cm} sulfide)$

So far, various single metal oxides (metal sulfides) have been coupled with $g-C_3N_4$ to stability, appropriate band distribution for

 $_{\rm 5}$ enhanced visible light photocatalysis. $^{\rm 83-87}$ Among abundant metal oxides, TiO₂ (Eg: 3.2ev) as a widely used photocatalyst, referentially acted as a candidate for constructing g-C₃N₄ based heterojunction. The work of Zhou et al., for example,

demonstrated that $g-C_3N_4/TiO_2$ nanotube array heterojunction was successfully achieved by a simple electrochemical method, showing highly effective visible-light performance with respect to bare $g-C_3N_4$ and TiO₂ nanotube.⁴⁵ Zhao el at obtained g- $_5C_3N_4/TiO_2$ hybrid photocatalyst by facile hydrolysis approach,

accompanied with a remarkable enhancement of photocatalytic capability in degradation of phenol both under visible and UV light irradiation.⁸³ Sridharan et al successfully fabricated g- C_3N_4/TiO_2 composite with decent photocatalytic performance


¹⁰ which was utilized in treatment of methylene blue (MB) and reduction of hazardous Cr(VI) ions.⁸⁴ Very recently, a direct Zscheme g-C₃N₄/TiO₂ photocatalysts were successfully prepared via simple one-step calcinations with well photocatalytic response for formaldehyde decomposition in air, which was ¹⁵ reported by Yu et al.⁸⁵

 WO_3 is another metal oxide that can be used to couple with g- C_3N_4 . The band gap of WO_3 is between 2.6 and 2.8 eV. $^{88-90}$. For instance, Zang et al obtained environmentally benign g- C_3N_4/WO_3 composite via facile mixing-heating procedure, which

- $_{20}$ showed superb performance in methyl orange (MO) degradation. 88 A WO_3/g-C_3N_4 heterojunction (Fig. 4a, and 4b) was prepared by a calcination process accompanied with marvelous visible-light-activity by degradation of MB and 4-chlorophenol, documented by Huang et al. 89 Apparently, all of the
- ²⁵ WO₃/g-C₃N₄ photocatalysts demonstrated higher photocatalytic performance than the pristine WO₃, g-C₃N₄ as well as the mechanically blended WO₃ and g-C₃N₄ sample under visible light irradiation (Fig. 4c). Equally important, Katsumata et al have associated g-C₃N₄ with WO₃ by a physical mixing method to ³⁰ decontaminate the organic gas pollution acetaldehyde (CH₃CHO).⁹⁰

The remarkably highly-increased performance of WO₃/g-C₃N₄ was mainly ascribed to the synergistic effects of the enhanced optical absorption in visible region, enlarged specific surface ³⁵ areas and the suitable band positions. A conceivable degradation

mechanism was put forward as the Fig. 4d.

 $WO_3/g-C_3N_4$ samples with different WO_3 contents under visible light; (d) Proposed mechanism for the photodegradation of contaminant on $WO_3/g-C_3N_4$ composite Reproduced from ref. 89 with permission from The Royal Society of Chemistry.

- As can be seen in Fig. 4d, the top of the VB and the bottom of the CB of WO₃ were calculated to be 3.15eV and 0.5 eV, respectively.⁸⁹ In the case of g-C₃N₄, the top of the VB is 1.57 V and the bottom of the CB is -1.13V.⁸⁹ The band gaps of g-C₃N₄ and WO₃ were 2.70 eV and 2.65 eV, respectively. The pristine g-
- $_{50}$ C₃N₄ and WO₃ are two semiconductors which can be both excited to produce photogenerated electron-hole pairs under visible light irradiation. Since the CB potential of (-1.13 eV) is lower than the CB edge of WO₃ (0.5eV), the excited-state electrons on g-C₃N₄ can directly inject into the CB of WO₃. Similarly, the VB position
- s5 of WO₃ (+3.15 eV) is higher than the VB of $g-C_3N_4$ (+1.57 eV). The photogenerated holes on the VB of WO₃ can be directly injected to the VB of $g-C_3N_4$. The redistribution of electrons on one side of the junction (WO₃) and holes on the opposite side (g- C_3N_4) greatly reduces the electron-hole recombination, which is
- ⁶⁰ beneficial to promote the photocatalytic performance. As a result, the photocatalytic activity of $WO_3/g-C_3N_4$ composites was much higher than that of WO_3 and the pristine $g-C_3N_4$. Therefore, the enhanced photocatalytic activity was mainly associated to the heterojunction structure and the suitable band-edge positions of the two semiconductors, except for enhanced optical absorption
- in visible region and enlarged specific surface areas of WO_3/g - C_3N_4 nanojuctions,

Besides, Cadmium sulfide (CdS) is a fascinating semiconductor with relative low band gap of 2.4 eV, which makes ⁷⁰ it able to absorb solar light up to 520 nm or even longer.^{86,87} Comparing the energy levels of C_3N_4 with CdS, it is fortunate to find that their well-matched band-structures are quite suitable to construct heterostructures that would bring an effective separation and transfer of photogenerated charges. To date, novel CdS/g-

- $_{75}$ C₃N₄ organic–inorganic composites composed of two visible light responsive semiconductors have been fabricated via an "in situ" precipitation–deposition method by Fu et al, exhibiting outstanding visible light photocatalytic activity in 4aminobenzoic acid removal.⁴²
- On account of multiple advantages of combining g-C₃N₄ with oxide (sulfide), a host of attempts have been devoted to exploit novel candidates for coupling with g-C₃N₄. They mainly include g-C₃N₄/Fe₂O₃,^{89,91} g-C₃N₄/CeO₂⁹³ g-C₃N₄/MoO₃,⁹⁴ g-C₃N₄/Fe₃O₄⁹⁵ g-C₃N₄/Ni(OH)₂,⁹⁶ g-C₃N₄/Ag₂O,⁹⁷ g-C₃N₄/MoS₂⁹⁸ g-⁸⁵ C₃N₄/ NiS,⁹⁹ g-C₃N₄/TaON,³⁰ g-C₃N₄/ZnO,^{100,101} g-C₃N₄/In₂O₃,¹⁰² g-C₃N₄/WO₃,¹⁰³ and SiO₂/g-C₃N₄. These g-C₃N₄ based nanocomposites have become an important family of visible light photocatalysts for contaminants degradation and hydrogen production (Table 2).

90

Fig. 4 (a,b) HRTEM images of WO₃/g-C₃N₄ (9.7%) composite; (c) ⁴⁰ Photocatalytic degradation efficiency of MB by g-C₃N₄, WO₃, blend and Table 2 Photocatalytic properties of g-C₃N₄/single metal oxide (metal sulfide) nanocomposite photocatalysts

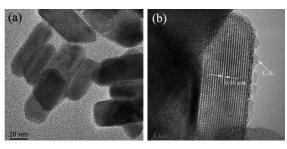
Composite photocatalyst	Mass fraction or molar of g-C ₃ N ₄	Typical parameters of photocatalytic experiments	Photocatalytic activity	Reference photocatalyst; photocatalytic activity	Enhancement factor over the reference photocatalyst	Reference
TiO ₂ /g-C ₃ N ₄	No data	Decomposing methyl orange (MO) under visible light	100% degradation in 30 min	g-C ₃ N ₄ :no data TiO ₂ : no data	No data 3	45
TiO ₂ /g-C ₃ N ₄	300 °C 500°C	Decomposing Methylene Blue (MB) under visible light;	93%, 75% degradation in 120 min;	g-C ₃ N ₄ : no data TiO ₂ : no data	No data No data	84
TiO ₂ /g-C ₃ N ₄	300 °C 500°C	Photocatalytic reduction of Cr(VI) under visible light	72% 45% in 100 min	g-C ₃ N ₄ : no data TiO ₂ : no data	No data No data	
ΓiO ₂ /g-C ₃ N ₄	Mass: 20%	Decomposing phenol under UV light	96.6% degradation in 60 min	g-C ₃ N ₄ :79.5% TiO ₂ : 65.9%	1.2 1.5	83
	Mass: 20%	Decomposing phenol under visible light	67.7% degradation in 180 min	g-C ₃ N ₄ :43.8% TiO ₂ : no data	1.5 No data	
$TiO_2/g-C_3N_4$	Mass: 16.7% 50% 66.7% 83.3%	Decomposing phenol under UV light	69.1%, in 60 min 82.7%, in 60 min 96.6% in 60 min 82.8%, in 60 min	g-C ₃ N ₄ :no data TiO ₂ : no data	No data No data	
TiO ₂ /g-C ₃ N ₄ (Z-scheme)	Mass ratio: 100 % (urea:P25)	Decomposing formaldehyde under UV light	94%, in 60 min apparent rate constant k : 7.36 $\times 10^{-2}$ min ⁻¹	g-C ₃ N ₄ :no data TiO ₂ : no data g-C ₃ N ₄ :no data P25: 3.53×10^{-2} min ⁻	No data No data No data 2.1	85
WO ₃ /g-C ₃ N ₄	Mass ratio: no data	Decomposing (MO) under visible light	No data	g-C ₃ N ₄ :no data WO ₃ : no data	No data No data	88
WO ₃ /g-C ₃ N ₄	Mass: 80% 60% 40% 20%	Decomposing acetaldehyde (CH ₃ CHO) under visible light	No data No data No data No data	g-C ₃ N ₄ :no data WO ₃ : no data	No data No data	90
WO ₃ /g-C ₃ N ₄	Mass:90.3%	decomposing MB under visible light decomposing	97% degradation in 2h	g-C ₃ N ₄ :81%,3h WO ₃ : 73%,3h	1.2 1.3	89
	Mass:90.3%	4-chlorophenol (4- CP) under visible light	43% degradation in 6h	g-C ₃ N ₄ :3%,6h WO ₃ : no data	14.3	
a-Fe ₂ O ₃ /g-C ₃ N ₄	No data	Electrochemical properties	supercapacitive performance	$g-C_3N_4$: no data $a-Fe_2O_3$:72 Fg^{-1}	No data 2.3;1.9	91
[Bmim]FeCl ₄ anhydrous FeCl			167 Fg ⁻¹ 140 Fg ⁻¹			
Fe ₂ O ₃ /g-C ₃ N ₄	Mass: 97.2% 95.1% 93.5% 92% 88.4%	Decomposing rhodamine B (RhB) under visible light	100%,in 120min 100%,in 160min 95.7%,in 180min 75.8%,in 180min 52.5%,in 180min	g-C ₃ N ₄ : 100%,180 min Fe ₂ O ₃ : no data	No data 0.96 0.76 0.53	9
ZnO/g-C ₃ N ₄	Mass: 95.1% 91.6% 84.4 % 41.9%	Decomposing rhodamine B (RhB) under visible light	No data No data 97%, in 80 min No data	g-C ₃ N ₄ : no data ZnO: no data	No data No data	100
ZnO/g-C ₃ N ₄	Mass: 84.4 %	Decomposing p- nitrophenol under visible light	No data	g-C ₃ N ₄ : 30%,5h ZnO: no data	No data No data	
ZnO/g-C ₃ N ₄	Mass: 5.0%	Decomposing (RhB) under visible light	97.4%, in 100 min	g-C ₃ N ₄ : no data ZnO: no data	No data No data	101
	Mass: 5.0%	photoreduction of Cr^{6+} under visible light irradiation	75.5%, in 100 min	g-C ₃ N ₄ : no data ZnO: no data	No data No data	

$CeO_2/g-C_3N_4$	Mass: 87%	decomposing MB under visible light	95%, in120 min	g-C ₃ N ₄ : 75%,3h CeO ₂ : 28%,3h	1.3 3.4	93
	Mass: 94.1%, 87.0%	decomposing 4-chlorophenol (4-	30%, in5 h 45%, in5 h	g-C ₃ N ₄ : 2.3% CeO ₂ :15.1%	13.0;2.0 19.6;3.0	
	77.6%	CP) under visible light	37%, in5 h		16.1;2.5	
MoO ₃ /g-C ₃ N ₄	Mass: 7.0 %	decomposing MB under visible light	93%, in3 h	g-C ₃ N ₄ : no data MoO ₃ : no data	No data No data	94
Fe ₃ O ₄ /g-C ₃ N ₄	Mass: 98 %	decomposing MO under visible light	No data	g-C ₃ N ₄ : no data Fe ₃ O ₄ : no data	No data No data	95
Ni(OH) ₂ /g-C ₃ N ₄	Molar: 99.5 % 99.9 %	Photocatalytic H ₂ evolution under visible light; co- catalyst: no; sacrificial reagent: triethanolamine	RH ₂ :7.6 mmol h ⁻¹ RH ₂ :3.3 mmol h ⁻¹	g-C ₃ N ₄ : no data Ni(OH) ₂ : no data	No data No data	96
MoS ₂ /g-C ₃ N ₄	Mass: 99.5 %	Photocatalytic H ₂ evolution under visible light; co- catalyst: no; sacrificial reagent: lactic acid	RH ₂ :20.6mmolh ⁻¹	g-C ₃ N ₄ : no data MoS ₂ : no data 0.5 wt % Pt/ g-C ₃ N ₄ : 4.8mmol h ⁻¹	No data No data 4.3	98
CdS/g-C ₃ N ₄	Mass: 70 %	Decomposing (MO) under visible light	92%, in20 min	g-C ₃ N ₄ :16%, in 25 min CdS: no data 0.3CdS-0.7TiO ₂ :19%, in 25 min	No data No data No data	42
	Mass: 70 %	Decomposing 4-aminobenzoic acid under	73%, in60 min	0.7C ₃ N ₄ 0.3TiO ₂ :22%, in 25 min g-C ₃ N ₄ :3%	No data 2.7	
NiS/g-C ₃ N ₄	Mass: 99.5 % 98.75 % 98 % 97.5 %	visible light Photocatalytic H ₂ evolution under visible light; co- catalyst: no; sacrificial reagent: triethanolamine	$\begin{array}{l} RH_2:9.2mmol \ h^{-1} \\ RH_2:48.2mmol \ h^{-1} \\ RH_2:32.1mmol \ h^{-1} \\ RH_2:13.5mmol \ h^{-1} \end{array}$	CdS:38% g-C ₃ N ₄ :0.2mmol h ⁻¹ NiS: no data	41.6 46.0 241.0 160.5 67.5	99
TaON/g-C ₃ N ₄	Mass: 60 %	Decomposing (RhB) under visible light	100%, in 50 min	g-C ₃ N ₄ :100%,in 80min TaON: 34%, in 80 min	No data No data	30
$In_2O_3/g-C_3N_4$	Mass: 90 %	CO ₂ reduction into hydrocarbon fuels	CH ₄ production yield: 76.7 ppm	g-C ₃ N ₄ : no data In ₂ O ₃ : no data	3.0 4.0	102
WO ₃ /g-C ₃ N ₄	Mass: 50 %	oxidation of acetaldehyde into CO ₂	at least 600 ppm of acetaldehyde had been removed in 48h	g-C ₃ N ₄ : no data WO ₃ : no data	No data No data	103
SiO ₂ /g-C ₃ N ₄	No data	Decomposing RhB under visible light	fully degraded in 60min	g-C ₃ N ₄ : no data SiO ₂ : no data	No data No data	104

3.3 g-C₃N₄/composite oxide

During the past few years, many groups have reported different types of g-C₃N₄/composite oxide heterojunction photocatalysts. ⁵ These research studies greatly improve the efficiencies of the photocatalysts and promote their applications in the energy production and environmental remediation. ^{105,106}

Table 3 summarizes and compares the $g-C_3N_4$ /composite oxide heterojunction photocatalysts. Among these photocatalytic ¹⁰ systems, Bi₂WO₆/g-C₃N₄ has been the most widely investigated. Ge et al prepared $g-C_3N_4/Bi_2WO_6$ heterostructured photocatalysts


via mixing and heating methods.³¹ The $g-C_3N_4/Bi_2WO_6$ photocatalyst had a remarkably enhanced MO photodegradation activity than pure $g-C_3N_4$ and Bi_2WO_6 under visible light ¹⁵ irradiation. This enhancement could be attributed to the enhanced

visible-light utilization efficiency and accelerated transfer of photogenerated electron-hole pairs at the intimate interface of heterojunctions, which rationally can be ascribed to the wellaligned overlapping band-structures of $g-C_3N_4$ and Bi_2WO_6 . ²⁰ Subsequently, Wang et al prepared Bi_2WO_6 hybridized with g- C_3N_4 by facile chemisorptions, which exhibited enhanced photocatalytic performance in MB degradation.¹⁰⁵ Tian et al hydrothermally synthesized a heterojunction by combining g- C_3N_4 with Bi_2WO_6 with enhanced visible light photocatalytic ²⁵ capbility.¹⁰⁶

Li chose SmVO₄ (band gap 2.28eV) as a promising candidate for constructing $g-C_3N_4$ coupling heterojunction, and this $g-C_3N_4$ /SmVO₄ composite photocatalyst exhibited high photocatalytic activity and stability for RhB decomposition under ³⁰ visible light irradiation.¹⁰⁷ Moreover, earth abundant cobalt phosphate (Co–Pi) has been demonstrated to work effectively as oxygen-evolving electrocatalyst¹⁰⁸⁻¹¹⁰ owing to its attractive characteristics such as the low cost and self-repairing behavior.^{111,112} Recently, The Co–Pi species are presented as nanoparticles and well-distributed on the g- C_3N_4 surface, and the Co–Pi/g- C_3N_4 composites exhibit stronger visible light absorption. The Co–Pi/g- C_3N_4 composite samples show significantly enhanced H_2 and O_2 evolution activities.¹¹³

- ⁵ It is well known that ZnWO₄ itself cannot be excited by visible light. On the contrary, C_3N_4 can absorb the visible light. Wang et al fabricated $C_3N_4/ZnWO_4$ coupling composite (Fig. 5a,b), i.e. the ZnWO₄, a semiconductor without visible photocatalytic performance was successfully photo-sensitized by g- C_3N_4 .¹¹⁴
- ¹⁰ These composites possessed eminent and commendably durable photocatalytic activity in removal of Rh-B, as well as enhanced photocurrent responses under visible light irradiation (Fig. 5c). More importantly, an new mechanism of ZnWO₄ sensitized by carbon nitride was presented in Fig. 5d.

15

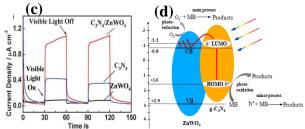
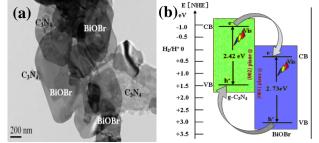


Fig. 5 HRTEM images of ZnWO₄ and $C_3N_4/ZnWO_4$ photocatalysts (a) ZnWO₄ (b) $C_3N_4/ZnWO_4$; (c) Photocurrents of ZnWO₄ and $C_3N_4/ZnWO_4$ 20 electrodes with light on/off cycles under visible light irradiation (λ >420 nm) ([Na₂SO₄]=0.1M); (d) Schematic drawing of $C_3N_4/ZnWO_4$ photocatalyst under visible light. Reprinted with permission from ref. 114. Copyright (2012) The Royal Society of Chemistry.

- ²⁵ Under visible light illumination, the excited-state electrons of the HOMO of the C_3N_4 would transport to the lower unoccupied molecular orbital (LUMO) of C_3N_4 (π - π * transition). Since the LUMO potential of C_3N_4 (-1.1 eV)¹¹⁵ is lower than the CB edge of ZnWO₄ (-0.8 eV)¹¹⁶, a chemical interaction occurs between ³⁰ them. Hence the excited-state electrons on C_3N_4 can directly inject into the CB of ZnWO₄. The electrons subsequently transfer to the photocatalyst surface to react with water and oxygen to generate hydroxyl and superoxide radicals.¹¹⁴ These reactive
- radicals are able to oxidize the pollutants. As a result, the CN ³⁵ polymer sensitized ZnWO₄ photocatalyst exhibits enhanced visible light photocatalytic performance. To further broaden the application, many groups have gained achievements on development of newly $g-C_3N_4$ based heterojunctions with superior performance in photocatalysis, such as $C_3N_4/BiPO_4$, ¹¹⁷ g-CN (4, PO, 118119, CN 2014, TO, 120, CN 4, CN 2014, CN
- ⁴⁰ C_3N_4/Ag_3PO_4 , ^{118,119} $g-C_3N_4/N-In_2TiO_5$, ¹²⁰ $g-C_3N_4/GdVO_4$, ¹²¹ $g-C_3N_4/NaTaO_3$, ¹²² $g-C_3N_4/Rh-SrTiO_3$, ¹²³ $g-C_3N_4/Bi_5Nb_3O_{15}$, ¹²⁴ and $g-C_3N_4/Ag_3VO_4$. ¹²⁵

Table 3 Photocata	alytic properties of	f g-C ₃ N ₄ /composite oxide h	eterojunction photocataly	ysts		
Composite photocatalyst	Mass or molar fraction of $g-C_3N_4$	Typical parameters of photocatalytic experiments	Photocatalytic activity	Reference photocatalyst; photocatalytic activity	Enhancement factor over the reference photocatalyst	Referen
BiPO ₄ /g-C ₃ N ₄	Mass:4%	Decomposing methyl blue (MB) under UV light	90% degradation in 5 min	BiPO ₄ : no data P25(TiO ₂):no data	2.5 4.5	117
	Mass:10%	Decomposing MB under visible light	apparent rate constant k : 0.31 h ⁻ 1	$g-C_3N_4$:k=0.06 h^{-1}	5	
Bi ₂ WO ₆ /g-C ₃ N ₄	Mass:2%	Decomposing (MB) under simulated solar irradiation	apparent rate constant: k : 1.0291 h ⁻¹	Bi ₂ WO ₆ ; k:0.6060 h ⁻¹	1.67	105
Bi ₂ WO ₆ /g-C ₃ N ₄	Mass:50%	Decomposing methyl orange (MO) under visible light	93% degradation in 120 min	g-C ₃ N ₄ : 31% Bi ₂ WO ₆ : 0.6%	3 155	106
Bi ₂ WO ₆ /g-C ₃ N ₄	Mass: 5% 10% 30% 50% 70% 90%	Decomposing (MO) under visible light	21.1%,3h 76.0%,3h 45.2%,3h 89.6%,3h 99.9%,3h 84.4%,3h	g-C ₃ N _{4,} :81.4%	0.26 0.46 0.56 1.10 1.23 1.03	31
Ag_3PO_4/g - C_3N_4	Mass:16.7%	Decomposing RhB under visible light	No data	g-C ₃ N ₄ , : no data Ag ₃ PO ₄ : no data	3.27 1.65	118
Ag_3PO_4/g - C_3N_4	Mass:25%	Decomposing (MO) under visible light	No data	g- C_3N_4 : no data Ag ₃ PO ₄ : no data	5 3.5	119
ZnWO ₄ /g-C ₃ N ₄	Mass: 5%	Decomposing MB under UV light and visible light	No data No data	$g-C_3N_{4,}$: no data $g-C_3N_{4,}$: no data	1.8 No data	114

Page	10	of	21


GdVO ₄ /g-C ₃ N ₄	Mass: 90%	Decomposing (RhB) under	apparent rate constant:	g-C ₃ N ₄ : no data N–TiO ₂ : no data	3.1 6.3	121
		visible light	k: 0.0434 min ⁻¹	GdVO ₄ : no data	36	
NaTaO ₃ /g-C ₃ N ₄	Mass: 5%	Decomposing	No data	g-C ₃ N ₄ :	No data	122
	10%	(RhB) under		NaTaO ₃ :	No data	
		UV light and		Degussa P25:	No data	
		visible light		-		
SrTiO3: Rh /	Mass: 30%	Photocatalytic H ₂	RH ₂ : 81.0 mmol ⁻¹	g-C ₃ N ₄ ;RH ₂ :10.7	7.57, 1.2	123
$g-C_3N_4$	20%	evolution under	223.3	SrTiO ₃ :Rh(0.3 mol%):	20.9, 3.24	
	10%	visible light; co-	92.6	68.9	8.7, 1.3	
		catalyst: no;				
		sacrificial reagent:				
		not mentioned				
Bi5Nb3O15 /	Mass: 50%	Decomposing (MO)	86%, in 3h	g-C ₃ N ₄ : 80%	1.07; 3.1	124
g-C ₃ N ₄	70%	under visible light	94%, in 3h	Bi ₅ Nb ₃ O ₁₅ : 28%	1.2; 3.4	
	90%		93%, in 3h		1.2; 3.3	
	Mass:70%	Decomposing 4-	100%, in 1h	g-C ₃ N ₄ : 72%	1.4	
		chlorophenol (4-CP)		Bi ₅ Nb ₃ O ₁₅ : 38%	2.6	
G (DO.)/	CD 20 (LUL	under visible light	N. 1 . 01		6.0	110
Co ₃ (PO ₄)/	CP-20 (UV	Photocatalytic O ₂	No data, 3h	g-C ₃ N ₄ :1.28µmol	6.8	110
g-C ₃ N ₄₂	irradiation time: 20min)	evolution under				
	time: 20min)	visible light; co-catalyst:				
		no; sacrificial				
		reagent:AgNO ₃				
$Co_3(PO_4)_2/$	CP-5	H_2 evolution	No data	g-C ₃ N ₄ :2.03µmolh-1	No data	
g-C ₃ N ₄	CP-10	under visible light	No data	g C314.2.05µmom 1	No data	
5 031 4	CP-20	under visible light	19.48µmolh-1		9.6	
	CP-30		No data		No data	
	CP-60		No data		No data	
N-In ₂ TiO ₅ /	No data	Decomposing (RhB)	degraded completely	g-C ₃ N ₄ : no data	No data	120
g-C ₃ N ₄		under visible light	within 20 min	N-In ₂ TiO ₅ :no data	No data	
0 5 1		e		2 9		
Ag ₃ VO ₄ /	Mass: 10%	Decomposing basic	60%, in 2.5h	g-C ₃ N ₄ : 15%	4.0; 2.0	125
g-C ₃ N ₄	40%	fuchsin (BF) under	95%, in 2.5h	Ag ₃ VO ₄ :30%	6.3; 3.2	
	50%	visible light	88%, in 2.5h		5.9; 2.9	
Ag ₃ VO ₄ /	Mass: 10%	malachite green	97%, in 1h	g-C ₃ N ₄ : no data	No data	
$g-C_3N_4$		(MG)		Ag ₃ VO ₄ :no data	No data	
Ag ₃ VO₄∕ g-	Mass: 10%	crystal violet (CV)	75%, in 2.5h	g-C ₃ N ₄ : no data	No data	
C_3N_4				Ag ₃ VO ₄ : no data	No data	
SmVO ₄ /	Mass:50.3%	Decomposing (RhB)	2.07 h^{-1}	g-C ₃ N ₄ : no data	2.4	104
$g-C_3N_4$		under visible light		SmVO ₄ : no data	6.3	

3.4 g-C₃N₄/BiOX (AgX)

Recently, as halide, BiOX (X = Cl, Br, I) with advantages of layered structure and indirect-transition band-gap were reported $_{5}$ as an efficient photocatalysts.¹²⁶⁻¹³⁴ The layered structure can provide a large enough space to polarize the related atoms and orbitals, and then induce the presence of internal static electric fields perpendicular to the [Bi₂O₂] slabs and halogen anionic slabs in BiOX.¹³⁵⁻¹³⁷ It is interesting to couple BiOX with g-C₃N₄ to form layered nanojunctions.

Among the BiOX photocatalysts, BiOBr with an appropriate band-gap (2.75 eV) exhibits high photocatalytic activity. Ye et al synthesized BiOBr-g-C₃N₄ inorganic–organic composite photocatalysts by a one-step chemical bath method at low temperature.¹³⁸ This heterojunction interacted by facets coupling contributes to the promoted photoinduced charges transfer between BiOBr and g-C₃N₄, and enhances the VLD photocatalytic activity for RhB degradation comparing with bare BiOBr and g-C₃N₄. Furthermore, Sun et al fabricated BiOBr-

 $_{20}$ C₃N₄ heterojunction (Fig. 6a) by depositing BiOBr nanosheets onto the surface of C₃N₄ nanosheets at room temperature.¹³⁹ The heterojunction possess intimately contacted interfaces and wellaligned straddling band-structures, which are propitious to the effective separation and transfer of photogenerated charges, bringing an excellent performance. A schematic illustration of the band gap structures for the samples is shown in Fig. 6b.

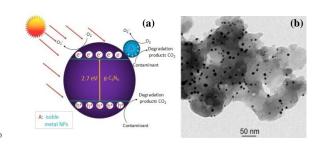
- ³⁰ **Fig. 6** TEM of the as-synthesized BiOBr/ C_3N_4 nanojunctions (a) and Schematic illustration of the band-gap matching and the crystal-plane coupling of C_3N_4 /BiOBr nanojunctions (b). Reproduced with permission from ref. 139, copyright 2014, Elsevier.
- The band structures of the two components are well-matched and ³⁵ aligned with each other (Fig. 6b). Both C₃N₄ and BiOBr can be excited by visible light and then generate photo-induced electrons and holes. The relative CB and VB edge positions of C₃N₄ nanosheets and BiOBr nanosheets imply that the well-matched band energies and crystal planes can form heterojunctions at ⁴⁰ nanoscale level. The excited electrons in CB of C₃N₄ can transfer

to CB of BiOBr, and excited holes in VB of BiOBr can transfer to VB of C_3N_4 , which results in efficient separation and transport of photo-induced electrons and holes. The 2D BiOBr/ C_3N_4 layered nanojunctions could effectively strengthen the photocatalytic

- ⁵ activity. This work demonstrated that novel 2D nanojunction, accompanied with high visible light activity can be constructed by combining two visible-light-active 2D semiconductors with well-coupled crystal planes and well-matched band structure, which could provide a new approach for promoting the activity of ¹⁰ current photocatalysts.
 - BiOI is an attractive p-type semiconductor with the strong photoresponse in the visible light region due to its narrow band gap energy (1.78 eV) and could act as a potential sensitizer to sensitize wide band gap semiconductors. Until now, Jiang et al
- ¹⁵ obtained novel p–n heterojunction photocatalyst constructed by porous graphite-like C_3N_4 and nanostructured BiOI.¹⁴⁰ In fact, the coupling of p- and n-type semiconductors is believed to be helpful because an internal electric field is built up between them. As a result, the coupling of n-type g- C_3N_4 with a p-type narrow
- 20 band gap BiOI semiconductor is a good strategy to enhance the visible light absorption capability and the photocatalytic performance of g-C₃N₄ under visible light irradiation. Besides,

Wang and his group successfully used BiOCl as an alternative to prepare $BiOCl/C_3N_4$ heterojunction photocatalysts via an ionic-²⁵ liquid-assisted solvent-thermal route, and this nanocomposites demonstrated significantly enhanced visible light performance in degradation of MO due the formation of well-matched heterostructure.¹⁴¹

AgX based photocatalysts have attracted great attention as ³⁰ promising candidates for the development of highly efficient visible light photocatalysts. Some efforts were made to explore new-type g-C₃N₄ based heterojunction by coupling silver halide. Silver halide AgX (X = Br, I) is a photosensitive material extensively used in photography field.¹⁴²⁻¹⁴⁴ Up to now, Xu et al ³⁵ successfully applied AgX (X = Br, I) developing novel visiblelight-driven AgX/graphite-like C₃N₄(X=Br, I) hybrid materials and the photocatalytic activity dramatically improved, using methyl orange (MO) as a target pollutan.¹⁴⁵ The high photocatalytic activity of the hybrid materials could be ascribed ⁴⁰ to the strong coupling between g-C₃N₄ and AgX, which facilitated interfacial charge transfer and inhibited electron-hole recombination. Table 4 summarizes the photocatalytic properties of different g-C₃N₄/BiOX (AgX) composite photocatalysts.


		-C ₃ N ₄ /BiOX (AgX) nanocompos	· ·			
Composite photocatalyst	Mass or molar fraction of g-C ₃ N ₄	Typical parameters of photocatalytic experiments	Photocatalytic activity	Reference photocatalyst; photocatalytic activity	Enhancement factor over the reference photocatalyst	Reference
BiOBr /g-C ₃ N ₄	Mass:50%	Decomposing rhodamine B (RhB) under visible light	95% degradation in 30 min	g-C ₃ N ₄ :15% BiOBr:35%	6.3 2.7	138
BiOBr/g-C ₃ N ₄	Mass:50%	NO removal under visible light	32.7% degradation in 30 min	g-C ₃ N ₄ :22.9% BiOBr: 21.2%	1.4 1.5	139
BiOCl/g-C ₃ N ₄	Molar: 50%	Decomposing methyl orange (MO) under visible light	95% degradation in 80 min	g-C ₃ N ₄ :11% BiOCl:58%	8.6 1.6	141
BiOI/g-C ₃ N ₄	Mass:77.5%	Decomposing methyl blue (MB) under visible light	99% degradation in 3h	g-C ₃ N ₄ :64% BiOI: 51%	1.5 1.9	140
AgBr /g-C ₃ N ₄	Molar:70%	Decomposing MO under visible light	91% degradation in 10h	g-C ₃ N ₄ : low AgBr:23%	No data 4	145
AgI /g-C ₃ N ₄	Molar: 97.5% 95% 90% 70% 50%	Decomposing MO under visible light	28%, 3.5h 44%, 3.5h 79%, 3.5h 81%, 3.5h 62%, 3.5h	g-C ₃ N ₄ :no data AgI: no data	No data No data	
AgBr /g-C ₃ N ₄	Molar: 70%	Decomposing 4-chlorophenol under visible light	30%, 6h	g-C ₃ N ₄ :6.1% AgBr: no data	4.9 No data	
AgI /g-C ₃ N ₄	Molar: 70%	Decomposing 4-chlorophenol under visible light	53%, 6h	g-C ₃ N ₄ :6.1% AgI: no data	8.7 No data	

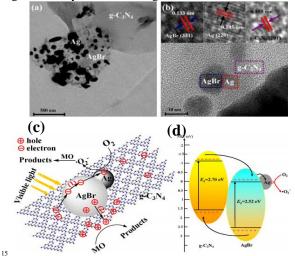
45 **3.5 g-C₃N₄/noble metal**

Semiconductor-metal junction is widely used to create a spacecharge separation region (called the Schottky barrier). At the interface of the two components, electrons transfer from one component to the other to align the Fermi energy levels, 50 preventing the charge recombination and enhancing photocatalytic performance. On the other hand, the surface plasmon renasance (SPR) endowed with noble matals could could increase the visibe light utilization and probably show special synegestic effectS with g- C_3N_4 .¹⁴⁶⁻¹⁵⁴ It is therefore feasible to ss couple noble metals with $g-C_3N_4$ in order to enhance the photocatalytic activity.¹⁵⁵⁻¹⁶¹ The work of Di et al., for example, preferentially demonstrated that the deposition-precipitation

method was successfully applied to prepare Au(III) nanoparticles on the surface of a structured polymeric g-C₃N₄.¹⁵⁵ The as-⁶⁰ synthesized nanoscopic Au–semiconductor heterojunctions effectively accelerate charges transfer on the intimate interface between g-C₃N₄ and Au nanoparticles, enabling high photocatalytic hydrogen production. In addition, given that gold nanoparticles (AuNPs) can serve as photocatalysts for the ⁶⁵ degradation of dyes under visible-light irradiation through the surface plasmon effect,¹⁵⁶ it is expected that AuNPs/g-C₃N₄ nanohybrids could show improved photocatalytic performance. Cheng et al proposed that Au nanoparticles (AuNPs) were successfully loaded on graphitic carbon nitride (g-C₃N₄), and the ⁷⁰ nanohybrids show superior photocatalytic activities for the decomposition of methyl orange under visible-light irradiation due to the facilitated sepration of photogenerated electron-hole pairs, and the surface plasmon resonance excitation in AuNPs.¹⁵⁷

- It is well-documented that Ag, a famous noble metal, was ⁵ regarded as a decent co-catalyst in constructing heterojunctions with g-C₃N₄ in photocatalytic utilizations.¹⁵⁸⁻¹⁵⁹ Yang et al reported that an efficient visible-light plasmonic photocatalyst, Ag/g-C₃N₄ heterostructure, is facilely fabricated by a simple polymerization-photodeposition route.¹⁵⁸ Compared with
- 10 individual g-C₃N₄, the photocatalytic activity of Ag/g-C₃N₄ was sharply enhanced toward the degradation of MO and pnitrophenol, which may be ascribed to the enhanced visible-light utilization efficiency due to the SPR absorption of silver nanoparticles as well as fast generation, separation and
- ¹⁵ transportation of the photogenerated carriers. Bai and his groups have developed novel core-shell Ag@g-C₃N₄ plasmonic nanocomposites by facile reflux treating method, exhibiting superb capability in photodegradation of MB and H₂ evolution.¹⁵⁹ Moreover, by embedding Pd nanoparticles on the g-C₃N₄, Pd/g-
- $_{20}$ C₃N₄ metal-semiconductor heterojunction was constructed and demonstrated highly strengthened photocatalytic performance in bisphenol removal.¹⁶⁰ Meanwhile, note that Li et al have successfully obtained g-C₃N₄/noble metal by directly loading with Pt, Au and Pd NPs respectively via a conventional solution
- $_{25}$ impregnation method.¹⁶¹ The functional catalyst/support system can unambiguously act as a tandem catalyst to effectively trigger the water reduction reaction to form H₂ and activation of the asformed H₂ for further reduction of 4-nitrophenol to 4aminophenol.

Fig. 7 (a) Schematic diagram illustrating the photocatalytic degradation of organic contaminants over noble metal NPs/g-C₃N₄ hybrid under visible-light irradiation; (b) TEM image of AuNP/g-C₃N₄ nanohybrids. Reprinted with permission from ref. 157. Copyright (2013) American Chemical ³⁵ Society.


g-C₃N₄ could function as an effective solid stabilizer for chaperoning various ultrafine noble metal NPs.¹⁶¹ It is worthwhile to elucidate the function mechanisms of g-C₃N₄/noble metal nanohybrids with improved the photocatalytic performance. ⁴⁰ As an example of Au/g-C₃N₄ nanohybrids,¹⁵⁷ a schematic diagram on the phorocatalytic mechanism of Au/g-C₃N₄ is presented in Fig. 7a. Owing to surface plasmon resonance of noble metal₄, the as-prepared Au/g-C₃N₄ nanocomposites exhibit highly enhanced visible-light photocatalytic activity. On the one 45 hand, the SPR effect of Au nanoparticle causes the intense local electromagnetic fields, which can speed the formation rate of holes and electrons within g-C₃N₄.¹⁵⁸⁻¹⁶¹ Additionally, the favorable Fermi level of noble metal facilitates the separation of electrons and holes, which in turn enhances the quantum $_{50}$ efficiency of g-C₃N₄, due to the intimate combination of the noble metal/g-C₃N₄ nanohybrids (Fig. 7b).¹⁶² Moreover, the transfer of electrons shifts the Fermi level to more negative potential, and thereby improving the reducibility of electrons in the Fermi level close to the CB of g-C₃N₄.¹⁶³ On the other hand, the efficient 55 utilization of sunlight can be realized due to SPR absorption in the visible-light region as well as UV light response of the inter band transition of noble metal nanoparticles. Table 5 shows the photocatalytic properties of different g-C₃N₄/noble metal nanocomposite photocatalysts.

Composite photocatalyst	Mass fraction or mass of g-C ₃ N ₄	Typical parameters of photocatalytic experiments	Photocatalytic activity	Reference photocatalyst; photocatalytic activity	Enhancement factor over the reference photocatalyst	Reference
Au/g-C ₃ N ₄	Mass:4.5%	Decomposing methyl orange (MO) under visible light	92.6% degradation in 150 min	g-C ₃ N ₄ : 28.7% Au: no data	3.2 No data	157
Au/g-C ₃ N ₄ Pt-Au/g-C ₃ N ₄ Pd-Au/g-C ₃ N ₄ Ru-Au/g-C ₃ N ₄ Ag-Au/g-C ₃ N ₄	No data No data No data No data No data	Photocatalytic H ₂ evolution under visible light; co-catalyst: no; sacrificial reagent: triethanolamine	RH ₂ : no data RH ₂ : no data RH ₂ : no data RH ₂ : no data RH ₂ : no data	Pt/g-C ₃ N ₄ ; RH ₂ : no data	No data	15
m-CNR-Au(2nm) m-CNR-Pd(3nm) m-CNR-Pt(2 nm)	No data No data No data	reduction of 4-nitrophenol to 4-aminophenol under visible light;	>96% in 5 min	No data	No data	161
m-CNR-Pt(2 nm)	No data	Photocatalytic H ₂ evolution Under a 300 W Xe lamp; co-catalyst: no; sacrificial reagent: triethanolamine	>85% H ₂ O convertion	No data	No data	

Ag/g-C ₃ N ₄	Ag: 0.1g	Decomposing MO under	MO of 74%	g-C ₃ N ₄ :70%;	1; 1.3	158
	Ag : 0.5g	visible light	MO of 78%	P25 TiO ₂ :56%	1.1; 1.4	
	Ag:1g	-	MO of 86%		1.2; 1.5	
	Ag:2g		MO of 91%		1.3; 1.6	
	Ag:5g		MO of 92%		1.3; 1.6	
Ag/g-C ₃ N ₄	Ag:2g	Decomposing	PNP of 98%	g-C ₃ N ₄ :83%;	1.2	
		p-nitrophenol(PNP)		P25 TiO ₂ :<10%	>9.8	
		under visible light				
Ag/g-C ₃ N ₄	Mass:99.5%	Decomposing MO	No data	g-C ₃ N ₄ :no data	2.1	159
		methyl blue (MB)	No data	g-C ₃ N ₄ :no data	1.8	
		phenol		g-C ₃ N ₄ :no data	2.2	
		under visible light				
Ag/g-C ₃ N ₄	Mass:90%	Photocatalytic H ₂ evolution Under visible light;	No data	g-C ₃ N ₄ :no data	30	
		co-catalyst:no;				
		sacrificial reagent:				
		triethanolamine				
$Pd/g-C_3N_4$	No data	Decomposing bisphenol A	93.9%	Bulk g-C ₃ N ₄ : 6%	15.65	160
		under solar light	Degradation	P25 TiO ₂ : 6.7%	14.01	
			in 180 min	g-C ₃ N ₄ : 52.1%	1.8	

3.6 g-C₃N₄ based complex system

Although a number of g-C₃N₄-based two-component nanocomposites have been developed for enhanced visible light 5 photocatalysis, there are still some shortages that needs to be further addressed. With this purpose, multicomponent complex heterojunction systems have been developed, in which two or more visible-light active components are integrated..¹⁶⁴⁻¹⁶⁷ For example, novel $Ag/AgBr/g-C_3N_4$ ternary composite 10 photocatalysts were successfully constructed via depositionprecipitation method, presenting dramatically improved photocatalytic performance for degradation of MO as well as good stability under visible light.164

Fig. 8 (a) TEM image and (b) HRTEM image of 50% Ag/AgBr/g-C₃N₄; (c) Schematic diagram of electron-hole pairs separation and the possible reaction mechanism over Ag/AgBr/g-C₃N₄ photocatalyst under visible light irradiation. Reproduced with permission from ref. 164, copyright 20 2013, Elsevier.

55

The high photocatalytic activity and stability of Ag/AgBr/g-C₃N₄ mainly attributed to the synergetic effect of AgBr/g-C₃N₄ interface and metallic Ag (Fig. 8a and 8b). Namely, the matching energy band structure of AgBr/g-C₃N₄ and excellent electron 25 trapping role of metallic Ag ensured the efficient separation of electron-hole pairs, i.e. metallic Ag quickly evacuated the electrons on the side of AgBr which guaranteed the stability of Ag/AgBr/g-C₃N₄, shown in Fig. 8c. Moreover, Chai et al. designed and prepared g-C₃N₄-Pt-TiO₂ three components 30 nanocomposites via a facile chemical adsorption-calcination process, accompanied with remarkably enhanced performance for hydrogen production under visible light irradiation.¹⁶⁵ The cocatalyst Pt deposited on TiO₂ surfaces in the g-C₃N₄-TiO₂ heterojunction is beneficial for exerting the synergistic effect $_{35}$ existing between TiO₂ and g-C₃N₄, which can strengthen the photogenerated carrier separation in space.

And inspiringly, a new-type Pt-TiO₂/g-C₃N₄-MnOx quaternary composites were also fabricated by a impregnation method with extraordinarily enhanced high H₂ production capacity, firstly 40 reported by S. Obreg on and G. Col on.¹⁶⁶ Such markedly increase in the photoactivity might be related the incorporation of Pt and g-C₃N₄-MnOx in the charge separation process, which is in favor of retarding the charge recombination and improving the photoactivity for H₂ production. A novel complex g-⁴⁵ C₃N₄/CoO/graphene hybrid, with g-C₃N₄ embedded CoO particles covalently supported on a two-dimensional graphene sheet, is synthesized through a facile and scalable method by Jin and his co-workers.¹⁶⁷ Above all, these significant achievements can pave the way for constructing g-C₃N₄-based multi-component 50 heterojunctions and it is highly possible to optimize the visible light absorption, the charge carriers separation and transfer by adequately tailoring the structure of the photocatalysts,.Recent progress on g-C₃N₄ based complex nanocomposites is summarized in Table 6.

Table 6 Photocata	alytic properties of g	-C ₃ N ₄ based complex syste	em			
Composite photocatalyst	Mass or molar fraction of g-C ₃ N ₄	Typical parameters of photocatalytic experiments	Photocatalytic activity	Reference photocatalyst; photocatalytic activity	Enhancement factor over the reference photocatalyst	Reference

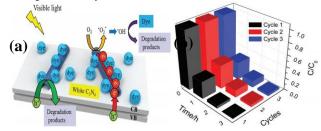
Ag/AgBr/g-C ₃ N ₄	Molar:5 0%	Decomposing methyl	95.3% degradation	g-C ₃ N ₄ :2.5%	38.1	164
		orange (MO) under visible light	in 30 min	Ag/AgBr:62.3%	1.5	
Ag/AgBr/g-C ₃ N ₄	Molar: 50%	Decomposing 2- chlorophenol under visible light	70.51% degradation in 4 h	No data	No data	
g-C ₃ N ₄ /Pt/TiO ₂	Mass: 70%	Photocatalytic H ₂ evolution under visible light; co-catalyst: no; sacrificial reagent: triethanolamine	RH ₂ : 0.178 mmol h ⁻¹	$\begin{array}{l} Pt\text{-loaded} g\text{-}C_3N_4\text{-}\\ TiO_2;\\ RH_2\text{:}0.124 \text{ mmol}\\ h^{\text{-}1} \end{array}$	1.4	165
Pt-TiO ₂ / g-C ₃ N ₄ -MnOx	No data	Decomposing phenol under UV light	96.4% degradation Time: no data	Pt- TiO ₂ :96.5% Pt-TiO ₂ /g-C ₃ N ₄ :96%	0.9 1.0	167
Pt-TiO ₂ / g-C ₃ N ₄ -MnOx	No data	Photocatalytic H ₂ Evolution under visible light;	RH_2 : 7.5 mmol $h^{-1}g^{-1}$	Pt- TiO ₂ ; RH ₂ : 5.5 mmol h ⁻¹ g ⁻¹	1.36	
		co-catalyst: no; sacrificial reagent: isopropanol		Pt- TiO ₂ / g-C ₃ N ₄ ; RH ₂ : 6.5 mmol $h^{-1}g^{-1}$	1.15	

4. Multifunctional applications

Semiconductor-mediated photocatalysis has attracted worldwide attention for its potential in environmental and energy-⁵ related applications.^{45,117-125} Nevertheless, the rapid recombination rate of photogenerated electron-hole pairs within photocatalytic materials results in low efficiency, thus limiting its practical applications. Therefore, the retardation of recombination of charge carriers is the key for the enhancement of ¹⁰ photocatalytic performance of semiconductor photocatalysts. g-

C₃N₄-semiconductor hybrid materials as a new class of photocatalysts recently has attracted wide research interests.¹³⁸⁻¹⁴¹ In this regard, nanocomposites that combine g-C₃N₄ and other components could potentially provide desirable efficiency for ¹⁵ separating electron-hole pairs. As documented above, the g-C₃N₄-

based semiconductor photocatalysts have been widely used for the degradation of pollutants, photocatalytic hydrogen generation and photocatalytic conversion of carbon dioxide to methane fuel, etc. In this section the multiple applications of g-C₃N₄-based ²⁰ nanocomposite are briefly summarized.


4.1 Photocatalytic degradation of pollutants

In recent years, a large quantity of efforts has been devoted to solving the widespread pollution of effluents and gaseous ²⁵ pollutants from urban and agricultural industries. Various catalytic techniques have been applied in environmental conservation. Photocatalysis has been widely used in environmental applications such as air purification,¹⁶⁸⁻¹⁷⁰ water disinfection,^{171,172} hazardous waste remediation^{173,174} and water ³⁰ decontamination.¹⁷⁵

Graphene carbon nitrogen, as a "rising star" material has many exceptional properties, such as environmentally benign, stable physicochemical property, large specific surface area and low bad-gap, etc.¹⁸⁻²⁰ Hence, g-C₃N₄-based semiconductor ³⁵ photocatalysts have been extensively applied to photocatalytic

- degradation of environmental pollutants.^{89,90} These composites possess high dye adsorption capacity, extended light absorption boundary, and accelerated charge transportation and separation properties.
- ⁴⁰ For instance, a novel, multi-walled carbon nanotubes (CNT) modified white C_3N_4 composite (CNT/white C_3N_4) were fabricated by Xu et al.⁷⁷ The CNT/ C_3N_4 nanocomposite was

prepares by the hydrothermal method through electrostaticallydriven self-assembly. The CNT/C₃N₄ composite shows 45 significantly enhanced photocatalytic performance in MB dye removal. A possible photocatalytic mechanism of CNT/white C₃N₄ on the enhancement of visible light performance is proposed (Fig. 9a). Firstly, the electrons are motivated from the VB to the CB of C₃N₄ under visible light irradiation. Secondly, 50 the photo-excited electrons are effectively collected by CNT, hindering the recombination process of the electron-hole pairs. Thirdly, the O₂ adsorbed on the surface of catalyst can be reduced to active species. The holes and the generated 'OH can react with the organic dye and generate degradation products. Furthermore, 55 the photocatalytic stability of CNT/white C₃N₄ was investigated through the repeated MB degradation experiments, as shown in Fig. 9b. It is clear that the MB dye can be completely bleached after each photocatalytic run, and CNT/C₃N₄ is stable enough during the repeated experiments without significant loss of 60 photocatalytic activity. Therefore, CNT/white C₃N₄ can be used as an effective photocatalyst for organic compounds degradation with good stability.

Fig. 9 (a) Proposed photocatalytic mechanism of the CNT/white C_3N_4 ; (b) ⁶⁵ Recycling in the repeated MB degradation experiments with CNT/white C_3N_4 under visible light irradiation. Reproduced with permission from ref. 77, Copyright (2013) The Royal Society of Chemistry.

Moreover, WO₃, a decent visible light catalyst was also selected to combine with $g-C_3N_4$.^{89,90} Zang et al.⁸⁹ reported that 70 the $g-C_3N_4/WO_3$ composite exhibited a significant enhancement of photocatalytic degradation of MO in water under visible light irradiation compared to the bare $g-C_3N_4$ and WO₃. As illustrated in Section 3 of $g-C_3N_4/metal$ oxide (metal sulfide), In the $g-C_3N_4/WO_3$ composite, holes activated on the VB of the WO₃ 75 would transfer to the VB of $g-C_3N_4$, while the electrons on CB of $g-C_3N_4$ may transfer to the CB of WO₃ under light irradiation due to the well-matched energy band structure. Therefore, the photogenerated electrons and holes can be separated effectively in this way, and the recombination rate of the photo-generated electrons and holes would be hampered, which contributed to the superior

- ⁵ photocatalytic reactivity. Moreover, this coupling heterojunction could also be used to remove the poisonous gaseous pollutant acetaldehyde gas (CH₃CHO), which is a typical volatile organic compound (VOC) and exerts adverse effects on the health of humans. By incorporating g-C₃N₄ with different contents of WO₃,
- ¹⁰ Katsumata et al studied the photocatalytic performance of this composite in acetaldehyde gas removal.⁹⁰ As a result, they found that as the WO₃ content increases, the photodegradation effect became more conspicuous, and the optimum mass ratio of $g-C_3N_4$ to WO₃ for photocatalysis is two to eight.⁹⁰ What is more, Huang
- ¹⁵ et al. further utilized this novel composite to treat another two organic pollutants of MB and 4-CP.⁸⁹The highest degradation efficiency was achieved for the WO₃/g-C₃N₄ (9.7%) sample, which induced 97% degradation of MB within 2h and 43% degradation of 4-CP within 6h under visible light irradiation, ²⁰ while pristine g-C₃N₄ only induced 81% degradation of MB
- within 3h and 3% degradation of 4-CP within 6h.⁸⁹

Apart from CNT/C₃N₄ and WO₃/g-C₃N₄ nanocomposites, composites of g-C₃N₄ and other semiconductor photocatalysts such as g-C₃N₄/TiO₂,^{83,85} CeO₂/g-C₃N₄,⁹³ g-C₃N₄/CdS,⁴² g-²⁵ C₃N₄/TaON,³⁰ g-C₃N₄/Bi₂WO₆^{105,106} BiOBr/g-C₃N₄,^{138,139} BiOI/g-C₃N₄¹⁴⁰ and Pd/g-C₃N₄¹⁶⁰ have been reported as efficient photocatalysts for decomposition of pollutants in water. Among these coupling systems, TiO₂ as a famous UV light-driven and g-C₃N₄ as a robust visible-light-driven photocatalysts, ³⁰ are favourably selected to be coupled for enhanced photocatalysis. Zhao et al. evaluated both the UV and visiblelight photocatalytic activity of g-C₃N₄/TiO₂ for degradation of phenol in water, and found that these composites exhibited

- excellent photocatalytic performance.⁸³ The pseudo-first-order ³⁵ kinetic constant of phenol degradation on $g-C_3N_4/TiO_2$ was 2.41 and 3.12 times higher that those on pristine $g-C_3N_4$ and TiO_2 respectively, which could be ascribed to the wide absorption wavelength range and effective photogenerated charge separation. Moreover, Fu and co-workers reported the $g-C_3N_4$ hybridized
- ⁴⁰ CdS composite as an efficient photocatalyst.⁴² The optimum activity of 0.7C₃N₄-0.3CdS photocatalyst is almost 20.5 and 3.1 times higher than those of individual C₃N₄ and CdS for methyl orange degradation, and 41.6 and 2.7 fold higher for 4aminobenzoic acid removal, respectively.⁴² Moreover, its activity
- ⁴⁵ is also much higher than those of C₃N₄–TiO₂ and CdS–TiO₂ composites, as well as famous N-modified TiO₂. Of particular significance is that the present C₃N₄–CdS composites also demonstrate high stabilities under illumination, in contrast with CdS.⁴² The improvement in both performance and stability ⁵⁰ should be assigned to the effective separation and transfer of
- photogenerated charges originating from the well-matched overlapping band-structures and closely contacted interfaces.

Recently, the g-C₃N₄-Bi₂WO₆ composite photocatalysts were studied by Tian and co-workers for the photocatalytic degrading ⁵⁵ MO under visible light irradiation.¹⁰⁶ Encouragingly, the resulting

⁵⁵ MO under visible light irradiation. ¹⁰⁶ Encouragingly, the resulting g-C₃N₄-Bi₂WO₆ heterojunctions own a strong absorption in the visible light region and have apparently enhanced photocatalytic performances. And this superior activity may be ascribed to the electronic interactions and charge equilibration between g-C₃N₄ ⁶⁰ and Bi₂WO₆, leading to the shift in the Fermi level and decreasing the conduction band potential of Bi₂WO₆. Simultaneously, the negative shift in the Fermi level of g-C₃N₄-Bi₂WO₆ and the high migration efficiency of photoinduced electrons can suppress the charge recombination effectively, ⁶⁵ resulting in the enhanced photocatalytic degradation of pollutants. Moreover, as bismuth subcarbonate ((BiO)₂CO₃) a novel photocatalyst, we achieved new g-C₃N₄/(BiO)₂CO₃ nanojunctions by a situ strategy depositing (BiO)₂CO₃ nanoflakes onto the surface of g-C₃N₄ nanosheets through efficiently capture ⁷⁰ atmospheric CO₂ (crude material of (BiO)₂CO₃) method at room temperature.¹⁷⁶ These nanojunctioned photocatalysts showed excellent visible-light capability by degrading RhB and phenol, accompanied by well-stability.

Hitherto, arrays of successful efforts of g-C₃N₄-based ⁷⁵ heterojunctions have also been paid to degrading NOx, which have been regarded as a worldwide gaseous pollutant. Our groups have investigated the photocatalytic capability of novel 2D BiOBr/C₃N₄ nanojunctions in NOx removal. ¹³⁹ The NO removal ratios of BiOBr/C₃N₄ can be achieved to 32.7%, which is much ⁸⁰ higher than that of the pristine BiOBr (21.2%) and C₃N₄ (21.2%).

⁸⁰ higher than that of the pristine BiOBr (21.2%) and C₃N₄ (21.2%). The enhancement of photocatalytic performance of BiOBr/C₃N₄ could be ascribed to the synergistic effect of well-coupled crystal planes and band structure. To further boast the photocatalytic activities, we constructed the g-C₃N₄/g-C₃N₄ metal-free isotype so heterojunction by a facile situ method.⁸¹ The CN-TU dramatically exhibited an improved NO removal ratio of 47.6%, compared to host substrates of CN-U and CN-T. Besides, this metal-free isotype heterojunction demonstrated well stability as well. The strengthened photocatalytic performance of g-C₃N₄/g-C₃N₄
⁹⁰ isotype heterojunction can be directly ascribed to the efficiently accelerated charge separation across the heterojunction interface as well as prolonged lifetime of charge carriers.

4.2 Photocatalytic hydrogen generation

05 Hydrogen energy is regarded as an ultimate clean fuel in the near future because of its high-energy capacity, environmental benignancy, and recycling utilization.^{96,177,178} Photocatalytic splitting water into hydrogen and oxygen using semiconductor photocatalysts has been regarded as an attractive and promising 100 approach to produce hydrogen energy. A flock of semiconductor photocatalysts have been reported to catalyze the evolution of hydrogen from water. However, the practical applications of this strategy are limited on account of the prompt recombination of photogenerated electron-hole pairs within photocatalysts. 105 Considering the visible-light-driven property and high specific surface area, g-C₃N₄ can be regarded as an efficient photocatalyst for enhancing the visible light utilization and accelerating the photo-induced charge transfer hampering the backward reaction, which will highly promote the photocatalytic H2-production 110 activity.179,180

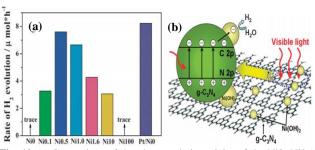


Fig. 10 (a) Comparison of the photocatalytic activity of the Ni0, Ni0.1, Ni0.5, Ni1.0, Ni1.6, Ni10, Ni100 and Pt-deposited g-C₃N₄ samples for the photocatalytic H₂ production from triethanolamine aqueous solution; (b) 5 Schematic illustration for the charge transfer and separation in the $Ni(OH)_2$ -modified g-C₃N₄ system under visible light irradiation. Reprinted with permission from ref. 96. Copyright (2013) The Royal Society of Chemistry.

- Ni(OH)₂/g-C₃N₄ composites loaded with different contents of ¹⁰ Ni(OH)₂, Yu and co-workers⁹⁶ studied their water splitting performance in triethanolamine aqueous solutions. The results demonstrated that Ni(OH)2 was an efficient co-catalyst for g-C₃N₄ photocatalytic producing H₂. The optimal Ni(OH)₂ loaded on g-C₃N₄ was found to be 0.5 mol%, giving a H₂-production rate
- 15 of 7.6 mmol h⁻¹ with quantum efficiency (QE) of 1.1% at 420 nm, depicted in Fig.10a. The fact that the potential of Ni²⁺/Ni is lower than that of the CB of g-C₃N₄ and more negative than that of H^+/H_2 favors the electron transfer from CB of g-C₃N₄ to Ni(OH)₂ and then reduce H^+ to H_2 with decent performance (Fig.10(b)).
- 20 This work proved that Ni(OH)2 was a very promising co-catalyst to combine with g-C₃N₄ for visible-light photocatalytic hydrogen production. Very recently, Hong et al 99 systematically studied the efficiency of H₂ evolution for the NiS/g-C₃N₄ composite constructed by a simple hydrothermal method. This photocatalyst
- ²⁵ showed efficient hydrogen evolution (48.2mmol h⁻¹) under visible light when using triethanolamine as a sacrificial reagent. The optimal ratios was 1.1 wt % of NiS loaded on g-C₃N₄ and the rates of H₂ production can be enhanced by about 250 times compared with the native C₃N₄. The highest apparent quantum
- 30 efficiency was recorded at 1.9 % induced by 440 nm light irradiation. In order to further explore the possible application of g-C₃N₄/single metal oxide (metal sulfide) composites in hydrogen production, Hou and co-workers98 constructed MoS₂/g-C₃N₄ nanojunctions and found that visible-light performance of H₂
- 35 production of mpg-CN is significantly improved compared with bare MoS₂ and g-C₃N₄. Inspiringly, the 0.5 wt % MoS₂/mpg-CN performed better than 0.5 wt % Pt/mpg-CN under identical reaction conditions. The geometric similarity (layered morphology) of MoS₂ and g-CN (Fig.11), accompanied with the
- 40 mesoporous architectures of mpg-CN facilitate to forming intimate planar MoS₂/mpg-CN interface, which can significantly promote the photoactivity of MoS₂/ g-C₃N₄. They also discovered that other layered transition metal dichalcogenides (such as WS₂) are also efficient promoters for hydrogen production combined
- ⁴⁵ with g-C₃N₄. Herein they have presented not only an example of a catalyst made of abundant C, N, Mo and S elements for efficient H₂ photosynthesis, but also a conceptual advance to rationally design and fabricate a thin, effective interfacial 2D junctions between co-catalysts and semiconductors that have
- 50 similar layered geometric architectures.

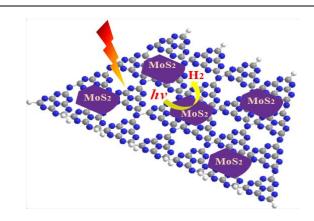


Fig. 11 Schematic illustration of the idealized structural model of the resultant MoS₂/g-CN layered junctions.

Apart from the g-C₃N₄/single metal oxide (sulfide) composites, 55 researches have coupled C3N4 with other decent photocatalysts to further strengthen the H_2 generation efficiency. ^{155,123,165}, Take noble metals as an example, Di al. reported that gold (Au) nanoparticles were successfully deposited on the surface of g-C₃N₄ by deposition-precipitation method.¹⁵⁵ The as-synthesized 60 nanoscopic Au-semiconductor heterojunctions effectively accelerated the transfer of charges between g-C₃N₄ and Au, which can enable Au-g-C₃N₄ with excellent visible-light activity for hydrogen production. Besides, surface modifying Au/g-C₃N₄ with a second metal Pt (low over-potential for water reduction) 65 further improved the activity of the photocatalytic system. This can be explained by simultaneous optimization of electron transfer induced by the gold and chemical reactivity afforded by the secondary metal Pt. Moreover, Kang and his groups systematically studied g-C₃N₄-SrTiO₃:Rh photocatalyst for ⁷⁰ improved H₂ evolution under visible light irradiation.¹²³ A high hydrogen evolution rate of 223.3 mmol h⁻¹ was achieved by using 0.1 g of as-prepared photocatalyst powder comprised of 20 wt.% g-C3N4 and 80% SrTiO3:Rh (0.3 mol%), measured in aqueous methanol solution. A mechanism for the electron-hole separation 75 of the g-C₃N₄-SrTiO₃:Rh composite under visible light irradiation was proposed. The Rh ions doped into the SrTiO₃ lattice structure formed a donor level from the VB to CB, which eased the transfer of the photo-induced holes form the SrTiO3:Rh surface to the g-C₃N₄ surface and the photo-induced electrons from the g-80 C₃N₄ surface to the SrTiO₃:Rh surface, thereby preventing the recombination of electron-hole pairs. Also, Chai et al. investigated a ternary nanocomposite g-C₃N₄-Pt-TiO₂ in photocatalytic hydrogen evolution.¹⁶⁵ The visible-light-induced photocatalytic hydrogen evolution rate can be remarkably ss strengthened by coupling TiO₂ with $g-C_3N_4$, and the $g-C_3N_4$ -(Pt-TiO₂) composite with a mass ratio of 70: 30 shows the maximum photocatalytic H_2 production rate (178 mmol h⁻¹), as well as excellent photostability. Moreover, the cocatalyst Pt deposited on TiO₂ surfaces is beneficial for exerting the synergistic effect 90 existing between TiO₂ and g-C₃N₄. Thus, the photogenerated electrons of g-C₃N₄ can directionally migrate to Pt-TiO₂ due to the close interfacial connections and the synergistic effect existing between Pt-TiO₂ and g-C₃N₄. The photogenerated electrons and holes can efficiently separated in space, beneficial 95 for retarding the charge recombination and improving the photoactivity. This study not only shows that g-C₃N₄ as an

effective sensitizer of TiO_2 can be widely used to improve photocatalytic H_2 production, but also afforded various methods for developing novel, steady and visible-light-responsive photocatalysts.

- ⁵ Also, graphene, a two-dimensional macromolecular sheet of carbon atoms with a honeycomb structure, extremely high specific surface area and thermal conductivity, showed a good photocatalytic performance for hydrogen or oxygen production.¹⁸¹ After introduction of graphene sheets, g-C₃N₄ is
- 10 immobilized to form a layered composites, which will largely increase the BET and catalytic performance. 32 In this system, graphene sheets act as conductive channels efficiently separating the photogenerated charge carriers as well as enhancing the visible-light capability of H₂-production. The optimal graphene
- $_{15}$ content was found to be 1.0 wt %, and the corresponding H_2production rate was 451 µmol h^-1g^-1, which exceeded that of pure g-C_3N_4 more than 3.07 times. The potential mechanism was illustrated in Scheme 1. Normally, when g-C_3N_4 is immobilized on the surface of graphene sheets to form the layered composites,
- ²⁰ these photogenerated electrons on the CB of $g-C_3N_4$ tend to transfer to graphene sheets due to their excellent electronic conductivity, favoring the hole-electron separation. Meanwhile, Sui et al. reported that they have successfully loaded highlydispersed conductive polymer polypyrrole (PPy) nanoparticles on
- ²⁵ the surface of $g-C_3N_4$.⁷⁶ Surprisingly, they found that the H₂ evolution rate of $g-C_3N_4$ loades with 1.5 wt% PPy can increase up to 50 times compared with that of pristine $g-C_3N_4$, and the reaction proceeded in a pure water system excluding the need of sacrificial agents. We believe that these work can provide an ³⁰ effective route for developing efficient photocatalysts for
- photocatalytic hydrogen evolution from pure water systems.

4.3 other applications

- Solar fuels have been considered as one of the most important ³⁵ renewable clean energy resources and photocatalytic converting CO₂ into valuable hydrocarbon fuel (CH₄) is known as a challenging but promising application for sustainable energy resources.^{76,182-186} In g-C₃N₄ based composites, Yuan et al. significantly obtained red phosphor/g-C₃N₄ heterojunction with ⁴⁰ enhanced photocatalytic activities for solar fuels production.⁷⁶
- The introduction of $g-C_3N_4$ onto Red phosphor surface led to considerable improvement of the photocatalytic activity for CO_2 conversion into CH_4 in the presence of water vapor. The enhancement could be attributed to the effective separation of
- ⁴⁵ photogenerated electrons and holes across the red phosphor/g- C_3N_4 heterojunction. Owing to the advantages of non-toxicity, low cost and abundance in nature, this active heterostructural red phosphor/g- C_3N_4 would have great potential for efficient solar fuels production. Very recently, $In_2O_3/g-C_3N_4$ hybrid
- ⁵⁰ photocatalysts were fabricated by Cao and his group, and the resulting In_2O_3 -g-C₃N₄ hybrid structures exhibited considerable photocatalytic activities for CO₂ reduction.¹⁰² After 4-h irradiation, the optimal In_2O_3/g -C₃N₄ (10 wt% In_2O_3) exhibited a CH₄ production yield of 76.7 ppm (over 20 mg samples) without
- ss any cocatalyst, which is more than three times higher than that of individual $g-C_3N_4$ and more than four times higher than that of pure In_2O_3 . The enhanced activities were attributed to the enhanced interfacial transfer of photogenerated electrons and

holes between $g-C_3N_4$ and In_2O_3 , leading to effective charge ⁶⁰ separation on both parts.

Moveover, g-C₃N₄ based composites also were considered as a promising candidate in photocatalytic disinfection.⁷⁵ A novel class of metal-free ternary heterojunction photocatalysts was prepared by wrapping reduced graphene oxide and g-C₃N₄ sheets ⁶⁵ on crystals of cyclooctasulfur (α -S8), reported by Wang et al.⁷⁵ Two distinctive structures were fabricated by wrapping reduced graphene oxide (RGO) and CN sheets in different orders. The first was RGO sheets sandwiched in heterojunction of CN sheets and α -S₈ (i.e., CNRGOS8), while the second structure was the 70 other way around (i.e., RGOCNS₈). And fascinatingly, both structures exhibited outstanding antibacterial activity in aerobic or anaerobic conditions irradiated with visible light (Fig. 12), which chosed colibacillus as a representative microorganism to evaluate the photocatalytic water disinfection performances. This 75 work not only provided new inroads into exploration and photocatalytic understanding the bacterial inactivation mechanisms, but also afforded to developing suitable protocols for solar-driven photocatalytic water disinfection under different conditions.

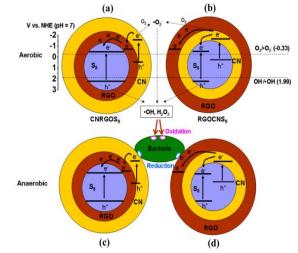


Fig. 12 Schematic illustration of the VLD photocatalytic bacterial inactivation mechanisms of (a) CNRGOS₈ and (b) RGOCNS₈ in aerobic condition, and (c) CNRGOS₈ and (d) RGOCNS₈ in anaerobic condition. (CNRGOS8 was RGO sheets sandwiched in heterojunction of CN sheets sa and α -S8, while RGOCNS8 was the other way around (i.e.,).Reprinted with permission from ref. 75. Copyright (2013) American Chemical Society.

In addition, g-C₃N₄-based heterojuctions are also utilized in performing as supercapacitors. Xu et al. mentioned that the g-⁹⁰ C₃N₄/a-Fe₂O₃ hollow microspheres have been successfully prepared in the presence of metal ion-containing reactable ionic liquid under the solvothermal condition.⁹¹ The capacitance of the g-C₃N₄/a-Fe₂O₃ composites as electrode materials was tested by cyclic voltammetry and chronopotentiometry measurements, ⁹⁵ demonstrating that the g-C₃N₄/a-Fe₂O₃ composites were capable of delivering a largest specific capacitance and highest coulombic efficiency. It can be assumed that the enhanced specific capacitance of the g-C₃N₄/a-Fe₂O₃ hollow microspheres could be attributed to hollow spheres-like structures, high BET surface ¹⁰⁰ area, incorporation of g-C₃N₄, and low electronic resistance. Thus, the g-C₃N₄/a-Fe₂O₃ hollow microspheres are promising candidate for high-performance supercapacitors.

Fig. 13 Schematic illustration of the $g-C_3N_4$ based $_5$ heterojunction/heterostructure and their multifunctional applications.

We have made a summary of the design strategy, categories and their multifunctional applications of $g-C_3N_4$ based nanocomposites as illustrated in Fig. 13.

10 5. Conclusion and perspectives

In summary, various types of $g-C_3N_4$ -based nanocomposites system have been designed and constructed. The incorporation of $g-C_3N_4$ into these nanocomposites can impart them with unique properties and induce enhanced performance, such as high 15 adsorption capacity, extended light absorption range, and accelerated charge separation and transportation, which strengthen the overall photocatalytic performance. A wide range

- of heterostructures, including metal-free, metal/semiconductor, semiconductor/semiconductor, molecule/semiconductor, and 20 multi-component heterostructures, have been explored for the improved photocatalysis by increasing the light absorption,
- improving the charge separation and transportation, enhancing the catalytic activity and prolonging the charge carriers lifetime. These nanocomposites photocatalysts have been widely used for ²⁵ photocatalytic degradation of pollutants, photocatalytic hydrogen
- generation, carbon dioxide storage and disinfection. The present review depicts the fabrication, microstructure and photocatalytic performance, as well as the photocatalytic mechanisms when g- C_3N_4 is coupled with an array of materials such as metal-free,
- $_{30}$ single metal oxide (metal sulfide), composite oxide, halide, noble metal, *etc.* It is anticipated that the g-C₃N₄-based nanocomposites will receive ever increasing research interest in the future.

Although considerable progress has been achieved, the studies in this field are still at the primary stage and further systematic ³⁵ investigations are needed. Rational design of complex heterostructures that could simultaneously facilitate efficient optical absorption, carrier generation, separation, transportation and utilizations is central for a new generation of highly efficient and robust photocatalysts. Significant challenges remain in the ⁴⁰ synthesis of such complex nanostructures with well designed

architectures and optimized charge cascading processes. First, a fundamental understanding of the charge transport process in the multi-heterostructure photocatalysts is critical for the optimization of the charge cascading process to maximize the

- ⁴⁵ utilization of photogenerated charge carriers for desirable redox chemistry. While it is relatively straightforward to understand electron/hole separation and transportation in a two component heterostructure, the understanding and control of charge transport in multi-component heterostructure become increasingly more ⁵⁰ complex, particularly on the nanometer scale. The interface properties of the photocatalysts determine the eventual efficiency
- of the photocatalytic system. To understand the charge generation, separation and transportation across these nanoscale interfaces is critical. Current investigations mainly focus on an overall ⁵⁵ apparent efficiency of the entire photocatalytic system. The detailed mechanism studies of the charge transfer process in photocatalysts integrating three or more components are scarce and will be necessary to further advance the field.

Secondly, the stability of g-C₃N₄-based nanocomposites is less ⁶⁰ addressed and will be one main challenge for photocatalyst development. A photocatalyst with very high efficiency is still useless if the lifetime of the catalyst is too short. For majority of systems, chemical corrosion and/or photodegradation of photocatalysts are difficult to avoid. The promoted photocatalyst ⁶⁵ stability has only been achieved in a few examples to date, which usually however, requires highly complicated synthetic processes. To develop a stable photocatalytic system with high efficiency at low-cost will be the central task to realize a practically viable photocatalyst for potential practical applications.

Thirdly, the mechanisms of photocatalytic enhancement by the g- C_3N_4 -based semiconductor composite systems are partly unclear. And the explanation of photocatalytic activity by the g- C_3N_4 content in the composites is still controversial. Therefore, more studies are required to promote the general understanding of 75 the enhancement mechanism of g- C_3N_4 based nanocomposites, especially employing advanced in situ techniques. Also, it is necessary to develop a uniform method to assess the photocatalytic performance as the current evaluation methods are diverse. A photocatalyst working better in water treatment may so show poor performance in air purification.

Finally, the rapid development of material science and nanotechnology in the past few years has resulted in the creation of various advanced photocatalytic materials. Interesting properties may be explored by combining novel photocatalysts ⁸⁵ with g-C₃N₄. With a better understanding of the fundamental photocatalysis mechanism, assisted by the rapid development of advanced new nanomaterials, the bottleneck of environmental and energy-related global issues could be overcome in the near future. Overall, it is certain that there will be numerous exciting ⁹⁰ opportunities on g-C₃N₄ based nanocomposites, which require the combined efforts of scientists all over the world.

Acknowledgements

This research is financially supported by the National Natural ⁹⁵ Science Foundation of China (51478070, 51108487), the Natural Science Foundation Project of CQ CSTC (cstc2013jcyjA20018), the Science and Technology Project from Chongqing Education Commission (KJ1400617, KJ130725), and the Innovative Research Team Development Program in University of ¹⁰⁰ Chongqing (KJTD201314).

75

80

Notes and references

- 1 C.C. Chen, W.H. Ma, J.C. Zhao, Chem. Soc. Rev., 2010, 39, 206–4219.
- 2 G. Liu, L.Z. Wang, H.G. Yang, H.M. Cheng and GQ. Lu, *J. Mater. Chem.*, 2010, **20**, 831–843.
- 3 D.Q. Zhang, GS. Li and J.C. Yu, J. Mater. Chem., 2010, **20**, 4529–4536.
- 4 M.D. Hernandez-Alonso, F. Fresno, S. Suarez and J.M. Coronado, *Energy Environ. Sci.*, 2009, 2, 1231–1257.
- 10 5 H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, *Adv. Mater.*, 2012, 24, 229-251
- 6 M.L. de Souza and P. Corio, Appl. Catal. B: Environ., 2013, 136–137, 325–333.
- 7 M. Radoi' ci' c, Z. Saponji' c, I.A. Jankovi' c, G. Ciri' c-Marjanovi 'c,
 S.P. Ahrenkiel and M.I. Comor, *Appl. Catal. B: Environ.*, 2013, 136–
- 137, 133–139.
 8 M.B. Radoičcićc, I.A. Jankovićc, V.N. Despotovićc, D.V. Sojićc, T.D.
- Savi'c, Z.V.'Saponji'c, B.F. Abramovi'c, M.I.'Comor, *Appl. Catal. B: Environ.*, 2013, **138/139**, 122–127.
- 20 9 J.X. Wang, P.X. Wang, Y.T. Cao, J. Chen, W.J. Li, Y. Shao, Y. and D.Z. Li, *Appl. Catal. B: Environ.*, 2013, **136–137**, 94–102.
- 10 T.T. Li, Y.M. He, H.J. Lin, J. Cai, L.Z. Dong, X.X. Wang, M.F. Luo, L.H. Zhao, X.D. Yi and W.Z. Weng, *Appl. Catal. B: Environ.*, 2013, 138–139, 95–103.
- 25 11 W.D. Shi, J.Q. Shi, S. Yu and P. Liu, Appl. Catal. B: Environ., 2013, 138–139, 184–190.
 - 12 D.G. Wang, H.F. Jiang, X. Zong, Q. Xu, Y. Ma, G.L. Li and C. Li, *Chem.-Eur. J.*, 2011, **17**, 1275–1282.
 - 13 Y.N. Guo, L. Chen, X. Yang, F.Y. Ma, S.Q. Zhang, Y.X. Yang, Y.H. Guo and X. Yuan, *RSC Adv.*, 2012, **24**, 656–4663.
- 14 D.Q. He, L.L. Wang, D.D. Xu, J.L. Zhai and D.J. Wang T.F. Xie, ACS Appl. Mater. Interfaces., 2011, 3, 3167–3171.
- 15 K.Maeda, Phys. Chem. Chem. Phys., 2013, 15, 10537-10548.
- 16 B. Siritanaratkul, K. Maeda, T. Hisatomi and K. Domen, *ChemSusChem*, 2011, 4, 7–78.
- 17 J.G. Hou, Z. Wang, W.B. Kan, S.Q. Jiao, H.M. Zhu and R.V. Kumar, J. Mater. Chem., 2012, 22, 7291–7299.
- 18 X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen and M. Antonietti, *Nat.Mater.*, 2009, 8, 76–80.
- ⁴⁰ 19 K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota and K. Domen, *Phys. Chem. Chem. Phys.*, 2010, **12**, 13020–13025.
- 20 F. Dong, L.W. Wu, Y.J. Sun, M. Fu, Z.B.Wu and S.C. Lee, J. Mater. Chem., 2011, 21 15171–15174.
- 21 B. Chai, T.Y. Peng, J. Mao, K. Li and L. Zan, *Phys. Chem. Chem.* 45 *Phys.*, 2012, **14**, 16745–16752.
- 22 J.H.Liu, Y.W. Zhang, L.H. Lu, G. Wu and W. Chen, *Chem. Commun.*, 2012, **48**, 8826–8828.
- 23 Y.W. Zhang, J.H. Liu, G. Wu and W. Chen, *Nanoscale* 2012, 4, 5300– -5303.
- 50 24 J.D. Hong, X.Y. Xia, Y.S. Wang and R. Xu, J. Mater. Chem., 2012, 22, 15006–15012
 - 25 S.C. Yan, Z.S. Li and Z.G. Zou, Langmuir, 2010, 26, 3894–3901.
 - 26 S.C. Yan, Z.S. Li and Z.G. Zou, *Langmuir*, 2009, **25**, 10397–10401.
- 27 Y.J. Wang, Z.X. Wang, S. Muhammad and J. He, *CrystEngComm*, 2012, **14**, 5065–5070.
- 28 G.G. Zhang, J.S. Zhang, M.W. Zhang and X.C. Wang, J. Mater. Chem., 2012, 22, 8083–8091.
- 29 J.S. Zhang, M.W. Zhang, R.Q. Sun and X.C. Wang, Angew. Chem. Int. Ed., 2012, 51, 10145–10149.
- 60 30 S.C. Yan, S.B. Lv, Z.S. Li and Z.G. Zou, *Dalton Trans.*, 2010, **39**, 1488–1491.
 - 31 L. Ge, C.C. Han and J. Liu, Appl. Catal. B:Environ., 2011, 108, 100– 107.
- 32 Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C, 2011, **115**, 7355– 7363.
- 33 F.Z. Su, S.C. Mathew, G. Lipner, X.Z. Fu and M. Antonietti, *J. Am. Chem. Soc.*, 2010, **132**, 16299–16301.
- 34 X.F. Chen, J.S. Zhang, X.Z. Fu, M. Antonietti and X.C. Wang, J. Am. Chem. Soc., 2009, 131, 11658–11659.
- 70 35 L. Ge, C.C. Han, J. Liu and Y.F. Li, *Appl. Catal. A: Gen.*, 2011, 409–410, 215–222.

- 36 Y. Di, X.C. Wang, A. Thomas and M. Antonietti, *ChemCatChem*, 2010, 2, 834–838.
- 37 C. Chang, Y. Fu, M. Hu, C.Y. Wang, GQ. Shan and L.Y. Zhu. Appl. Catal. B: Environ., 2013, 142-143, 553–560.
- 38 G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, GQ. Lu and H.M. Cheng, J. Am. Chem. Soc., 2010, 132, 11642–11648.
- 39 S.C. Yan, Z.S. Li and Z.G. Zou, Langmuir, 2010, 26, 3894–3901.
- 40 Y.J. Zhang, T. Mori, J.H. Ye and M. Antonietti, J. Am. Chem. Soc., 2010, 132, 6294–6295.
- 41 H.J. Yan and H. Yan, Chem. Commun., 2011, 47, 4168–4170.
- 42 J. Fu, B.B. Chang, Y.L. Tian, F.N. Xi and X.P. Dong, *J. Mater. Chem. A.*, 2013, **1**, 3083–3090.
- 43 Y.Y. Wang, X.J. Bai, C.S. Pan, J. He and Y.F. Zhu, J. Mater. Chem., 2012, 22, 11568–11573
- 44 D.L. Jiang, L.L. Chen, J.J. Zhu, M. Chen, W.D. Shi, and J.M. Xie, Dalton Trans., 2013, **42**, 15726-15734.
- 45 X.S. Zhou, B. Jin, L.D. Li, F. Peng, H.J. Wang, H. Yu and Y.P. Fang, *J. Mater. Chem.*, 2012, **22**, 17900–17905
- 90 46 W. Liu, M.L. Wang, C.X. Xu, S.F. Chen, *Chem. Eng. J.*, 2012, 209, 386–393.
 - 47 Y.J. Wang, Z.X. Wang, S. Muhammad and J. He, *CrystEngComm.*, 2012, **14**, 5065–5070.
- 48 H. McDaniel, P. E. Heil, C. L. Tsai, K. K. Kim and M. Shim, *ACS* 95 *Nano.*, 2011, **5**, 7677–7683.
- 49 M. Shim, H. McDaniel and N. Oh, J. Phys. Chem. Lett., 2011, 2, 2722–2727.
- 50 X.C. Wang, W.B. Mi, E.Y. Jiang and H.L. Bai, *Appl. Surf. Sci.*, 2009, 255, 4005–4010.
- 100 51 S. C. Yan, S. B. Lv, Z. S. Li and Z. G. Zou, *Dalton Trans.*, 2010, 39, 1488–1491.
 - 52 S. Polarz, M. Antonietti, Chem. Commun. 2002, 2593–2604.
 - 53 M. Groenewolt and M. Antonietti, Adv. Mater., 2005, 17, 1789–1792.
- 54 C. D. Liang, K. L. Hong, G. A. Guiochon, J. W. Mays and S. Dai, 105 Angew. Chem. Int. Ed., 2004, **116**, 5909–5913;
 - 55 A. Thomas, F. Goettmann and M. Antonietti, *Chem. Mater.*, 2008, 20, 738–755.
 - 56 M. Antonietti and C. Opin. J. Colloid Interface Sci., 2001, 6, 244–248.
- ¹¹⁰ 57 D. H. Chen, Z. Li, Y. Wan, X. J. Tu, Y. F. Shi, Z. X. Chen, W. Shen, C. Z. Yu, B. Tu and D. Y. Zhao, *J. Mater. Chem.* 2006, **16**, 1511–1519.
 - 58 C. D. Liang, Z. J. Li, S. Dai, Angew. Chem. Int. Ed., 2008, **120**, 3754–3776.
- N.Y. Cheng, J.Q. Tian, Q. Liu, C.J. Ge, A. H. Qusti, A. M. Asiri, A.
 O. Al-Youbi, and X.P. Sun, *Appl. Mater. Interfaces.*, 2013, 5, 6815–6819.
 - 60 Y. J. Zhang, A. Thomas, M. Antonietti and X. C. Wang, J. Am. Chem. Soc., 2009, 131, 50–51.
- 61 Y.G. Xu,H. Xu, L. Wang, J. Yan, H.M. Li, Y.H. Song, L.Y. Huang 120 and G.B. Cai, *Dalton Trans.*, 2013, **42**, 7604–7613
 - 62 Y. Wang, Y. Di, M. Antonietti, H. R. Li, X. F. Chen and X. C. Wang, *Chem. Mater.*, 2010, 22, 5119 –5121.
 - 63 Y. Wang, H. R. Li, J. Yao, X. C. Wang and M. Antonietti, *Chem. Sci.*2011, **2**, 446–450.
- 125 64 G. Liu, P. Niu, C. H. Sun, S. C. Smith, Z. G. Chen, G. Q. Lu and H. M. Cheng, J. Am. Chem. Soc., 2010, 132, 11642–11648.
 - 65 M. Kawaguchi and K. Nozaki, *Chem. Mater.*, 1995, **7**, 257–264.
 - 66 J. S. Zhang, X. F. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Z. Fu, M. Antonietti and X. C. Wang, *Angew. Chem. Int. Ed.*, 2010, **122**, 451–454.
 - 67 Geim, A. K., Novoselov and K. S, Nat. Mater., 2007, 6, 183–191.
 - 68 Geim, A. K, Science., 2009, **324**, 1530–1534.

- 69 M. J. Allen, V. C. Tung and R. B. Kaner, *Chem. Rev.*, 2010, **110**,132– 145.
- ¹³⁵ 70 Y. Q. Sun, C. Li, Y. X. Xu, H. Bai, Z. Y. Yao and G. Q. Shi, *Chem. Commun.*, 2010, **46**, 4740–4742.
 - 71 J. G. Yu, L. F. Qi and M. Jaroniec, J. Phys. Chem. C., 2010,114, 13118–13125.
- 72 J. G. Yu, G. P. Dai and B. B. Huang, J. Phys. Chem. C., 2009, 140 **113**,16394–16401.
 - 73 G Williams, B. Seger and P. V. Kamat, ACS Nano, 2008, 2, 1487–1491.
 - 74 Y.B. Li, H.M. Zhang, P.R. Liu, D.Wang, Y. Li and H.J. Zhao, Small, 2013, 9, 3336–3344.

95

- 75 W.J. Wang, J.C. Yu, D.H. Xia, P.K. Wong and Y.C. Li, *Environ. Sci. Technol.* 2013, 47, 8724–8732.
- 76 L. Ge and C.C. Han, Appl.Catal.B:Environ., 2012, 117–118, 268– 274.
- ⁵ 77 Y. G. Xu, H. Xu, L. Wang, J. Yan, H.M. Li, Y.H. Song, L.Y. Huang and GB. Cai, *Dalton Trans.*, 2013, **42**, 7604–7613
- 78 Y. Sui, J.H. Liu, Y.W. Zhang, X.K. Tian and W. Chen, *Nanoscale*, 2013, 5, 9150–9155.
- Y.P. Yuan, S.W. Cao, Y.S. Liao, L.S. Yin and C. Xue, *Appl. Catal. B: Environ.*, 2013, **140-141**,164–168.
- 80 J.S. Zhang, M.W. Zhang, R.Q. Sun and X.C. Wang, Angew. Chem. Int. Ed.; 2012, 124, 10292–10296.
- 81 F. Dong, Z.W. Zhao, T. Xiong, Z.L. Ni, W.D. Zhang, Y.J. Sun and W.K. Ho, ACS Appl. Mater. Interfaces, 2013, 5, 11392–11401.
- 15 82 B. Chai, X. Liao, F.K. Song and H. Zhou, *Dalton Trans.*, 2014, 43, 982–989.
- 83 S.S. Zhao, S. Chen, H.T. Yu and X. Quan, Sep Purif. Technol., 2012, 99, 50–54.
- 84 K. Sridharan, E. Jang and T. J. Park, *Appl. Catal. B: Environ.*, 20 2013,**142–143**, 718–728.
- 85 J.G. Yu, S.H. Wang, J.X. Low and W. Xiao, *Phys. Chem. Chem. Phys.*, 2013, **15**, 16883–16890.
- 86 J. Ran, J. Yu and M. Jaroniec, *Green Chem.*, 2011, 13, 2708–2713.
 87 L. A. Silva, S. Y. Ryu, J. Choi, W. Choi and M. R. Hoffmann, *J. Phys.*
- L. A. Shiya, S. T. Kyu, J. Choi, W. Choi and M. K. Hollmann, J. Phys.
 Chem. C., 2008, **112**, 12069–12073.
 W. Zang, L. Li, Y. Chen, C. S. Li, and Y.F. Chen, D.C. Li, and Y.F. Li, and Y.F. Chen, D.C. Li, and Y.F. Li, and Y.F.
- 88 Y.P. Zang, L.P. Li, Y. Zuo, H.F. Lin, G.S. Li and X.F. Guan, *RSC Adv.*, 2013, **3**, 13646–13650.
- 89 L.Y. Huang, H. Xu, Y.P. Li, H.M. Li, X.N. Cheng, J.X. Xia, Y.G. Xu and G.B. Cai, *Dalton Trans.*, 2013, 42, 8606–8616.
- 30 90 K. Katsumata, R. Motoyoshi, N. Matsushita and K.Okada, J. Hazard. Mater, 2013, 260, 475–482.
- 91 L. Xu, J.X. Xia, H. Xu, S. Yin, K. Wang, L.Y. Huang, LG. Wang and H.M. Li, J. Power Sources., 2014, 245, 866–874.
- 92 S. Ye, L. G. Qiu, Y.P. Yuan, Y.J. Zhu, J. Xia and J.F. Zhu, *J. Mater. Chem. A.*, 2013, **1**, 3008–3015.
- 93 L.Y. Huang, Y.P. Li, H. Xu, Y.G. Xu, J.X. Xia, K. Wang, H.M. Li and X.N. Cheng, *RSC Adv.*, 2013, **3**, 22269–22279.
- 94 L.Y. Huang, H. Xu, R.X. Zhang, X.N. Cheng, J.X. Xia, Y.G. Xu and H.M. Li, *Appl. Surf. Sci.*, 2013, **283**, 25-32.
- 40 95 X.S. Zhou, B. Jin, R.Q. Chen, F. Peng and Y.P. Fang, *Mater. Res. Bull.*, 2013, **48**, 1447–1452.
- 96 J.G. Yu, S.H. Wang, B. Cheng, Z. Lin and F. Huang, *Catal. Sci.* Technol., 2013, 3, 1782–1789.
- M. Xu, L. Han, and S.H. Dong, ACS Appl. Mater. Interfaces., 2013,
 5, 12533–12540
- 98 Y.D. Hou, A. B. Laursen, J.S. Zhang, G.G. Zhang, Y.S. Zhu and X.C. Wang, Angew. Chem. Int. Ed., 2013, 52, 3621-3625..
- 99 J.D. Hong, Y.S. Wang, Y.B. Wang, W. Zhang and R. Xu, ChemSusChem, 2013, 6, 2263–2268.
- ⁵⁰ 100 J.X. Sun, Y.P. Yuan, L.G. Qiu, X. Jiang, A.J. Xie, Y.H. Shen and J.F. Zhu, *Dalton Trans.*, 2012, **41**, 6756–6763.
 - W. Liu, M.L. Wang, C.X. Xu and S.f. Chen, *Chem. Eng. J.* 2012, 209, 386–393.
- S.W. Cao, X. F. Liu, Y.P. Yuan, Z.Y. Zhang, Y.S. Liao, J. Fang,
 S. C.J. Loo, T. C. Sum and C.Xue, *Appl. Catal. B: Environ.*, 2014,
 147, 940–946.
- 103 Z.Y. Jin, N.Y. Murakami, T. Tsubota, T. Ohno, *Appl. Catal. B: Environ.*, 2014, **150-151**, 479–485.
- 104 M. Shalom, S. Inal, D.Neherb, M. Antonietti, *Catal. Taday.* 2014, **225**, 185-190.
- 105 Y.J. Wang, X.J. Bai, C.S. Pan, J. He and Y.F. Zhu, J. Mater. Chem., 2012, 22, 11568–11573.
- 106 Y.L. Tian, B.B. Chang, J.L. Lu, J. Fu, F.N. Xi, and X.P. Dong, ACS Appl. Mater. Inter. 2013, 5, 7079–7085.
- 65 107 T.T. Li, L.H. Zhao, Y.M. He, J. Cai, M.F. Luo and J.J. Lin, Appl. Catal. B: Environ., 2013, **129**, 255–263.
 - 108 M.W. Kanan, and D.G. Nocera, *Science.*, 2008, **321**, 1072–1075.
 - 109 E.M.P. Steinmiller and K.S. Choi, *P. Natl. Acad. Sci.USA.*, 2009, **106**, 20633–20636.
- 70 110 Y. Surendranath, M. Dinca and D.G. Nocera, J. Am. Chem. Soc., 2009, 131, 2615–2620.
- 111 D.A. Lutterman, Y. Surendranath and D.G. Nocera, J. Am. Chem. Soc., 2009, 131, 3838–3839.

- 112 Y. Surendranath, D.A. Lutterman, Y. Liu and D.G. Nocera, J. 75 Am.Chem. Soc., 2012, **134**, 6326–6336.
 - 113 L. Ge, C.C. Han, X.L. Xiao and L.L. Guo, *Appl.Catal.B:Environ.*, 2013,**142–143**, 414–422.
 - 114 Y.J. Wang, Z.X. Wang, S. Muhammad and J. He, *CrystEngComm*, 2012, **14**, 5065–5070.
- 80 115 S. Zhu, T. Xu, H. Fu, J. Zhao and Y. Zhu, *Environ. Sci. Technol.*, 2007, **41**, 6234.
 - 116 G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, *Science*, 1995, **270**, 1789.
 - 117 C.S. Pan, J. Xu, Y.J. Wang, D. Li and Y.F. Zhu, Adv. Funct. Mater., 2012, 22, 1518–1524.
 - 118 F.J. Zhang, F.Z. Xie, S.F. Zhu, J. Liu, J. Zhang, S.F. Mei and W. Zhao, *Chem. Eng. J.*, 2013, **228**, 435–441.
 - 119 S.Kumar, T. Surendar, A. Baruah and V. Shanker, J. Mater. Chem. A., 2013, 1, 5333–5340.
- 90 120 Y. Liu, G. Chen, C. Zhou, Y.D. Hu, D.G. Fu, J. Liu and Q. Wang, J. Hazard. Mater., 2011, 190, 75–80.
 - 121 Y.M. He, J. Cai, T.T. Li, Y. Wu, H.J. Lin, L.H. Zhao and M.F. Luo, *Chem. Eng. J.*, 2013, **215-216**, 721–730.
 - 122 S.Kumar, B. Kumar and S.T.V. Shanker, *Mater. Res. Bull.*, 2014, **49**, 310–318.
 - 123 H.W. Kang, S. N. Lim, D.S. Song and S. B. Park, Int.J.Hydrogen.Energ., 2012, **37**, 11602–11610.
 - 124 S.Q. Zhang, Y.X. Yang, Y.N. Guo, W. Guo, M. Wang, Y.H. Guo and M.X. Huo, J. Hazard. Mater., 2013, 261, 235–245.
- 100 125 S.M. Wang, D.L. Li, C. Sun, S.G. Yang, Y. Guan and H. He, *Appl.Catal.B:Environ.*, 2014, **144**, 885–892.
 - 126 X. Zhang, Z. Ai, F. Jia and L. Zhang, J. Phys. Chem. C., 2008, 112, 747–753.
- 127 J. Henle, P. Simon, A. Frenzel, S. Scholz and S. Kaskel, *Chem. Mater.*, 2007, **19**, 366–373.
 - 128 M.A. Gondala, X. Chang, M.A. Ali, Z.H. Yamania, Q. Zhou and G. Ji, *Appl. Catal. A-Gen.*, 2011, **397**,192–200.
 - 129 L. Ye, J. Liu, C. Gong, L. Tian, T. Peng and L. Zan, ACS Catal., 2012, 2, 1677–1683.
- 110 130 L. Ye, C. Gong, J. Liu, L. Tian, T. Peng, K. Deng and L. Zan, J. Mater. Chem., 2012, 22, 8354–8360.
 - 131 L. Ye, L. Tian, T. Peng and L. Zan, J. Mater. Chem., 2011, 21, 12479–12484.
- Y. Feng, L. Li, J. Li, J. Wang and L. Liu, J. Hazard. Mater., 2011,
 115 192, 538–544.
 - 133 Y. Fan, Y. Huang, J. Yang, P. Wang and G. Cheng, *Environ. Sci. Technol.*, 2011, 45, 1593–1600.
 - 134 J. Xu, W. Meng, Y. Zhang, L. Li and C. Guo, *Appl.Catal.B:Environ.*, 2011, **107**, 355–362.
- 120 135 W.L. Huang, Q. Zhu, Comp. Mater. Sci., 2008, 43, 1101–1108.
 - 136 L. Ye, L. Zan, L. Tian, T. Peng and J. Zhang, Chem. Commun. 2011, 47, 6951–6953.
 - 137 J. Jiang, K. Zhao, X. Xiao, L. Zhang, J. Am. Chem.Soc. 2012, 134, 4473–4476.
- 125 138 L.Q. Ye, J.Y. Liu, Z. Jiang, T.Y. Peng and L. Zan, Appl. Catal. B: Environ., 2013, 142-143,1–7.
 - Y.J. Sun, W.D. Zhang, T. Xiong, Z.W. Zhao, F. Dong, R.Q. Wang and W.K. Ho, *J. Colloid Interface. Sci.*, 2014, **418**, 317–323.
 - 140 D.L. Jiang, L.I. Chen, J.J. Zhu, M. Chen, W.D. Shi and J.M. Xie, *Dalton Trans.*, 2013, **42**, 15726–15734.
 - 141 X.J. Wang, Q. Wang, F.T. Li, W.Y. Yang and Y. Zhao, *Chem. Eng. J.*, 2013, **234**, 361-371.
 - 142 H. Wang, J. Gao, T. Guo, R. Wang, L. Guo, Y. Liu and J. Li, *Chem.Commun.*, 2012, 48 275–277.
- 135 143 Z. Lou, B. Huang, X. Qin, X. Zhang, Z. Wang Z. Zheng, H. Cheng, P. Wang and Y. Dai, *Catal. Today.*, 2011, **175**, 256–263.
 - 144 L. Liu, H. Xu, H. Li, Y. Xu, J. Xia and S. Yin, *J.Phys.Chem.Solids.*, 2012, **73**, 523–529.
- H.Xu, J. Yan, Y.G. Xu, Y.H. Song, H.M. Li, J.X. Xia, C.J. Huang
 and H.L.Wan, *Appl. Catal. B: Environ.*, **129**,182–193.
 - 146 C.R. Crowell and S.M. Sze, *solid-state electronics*, 1966, **9**, 1035-1048.
 - 147 Y. Di, X.C. Wang, A. Thomas and M. Antonietti, *ChemCatChem*, 2010, 2, 834-838

95

Nanoscale

55

- 148 J. S. Jang, H. G. Kim and J. S. Lee, *Catal. Today*, 2012, **185**, 270– 277.
- 149 P. V. Kamat, J. Phys. Chem. Lett., 2012, 3 (5), 663–672.
- 150 N. Serpone, A.V. Emeline, J. Phys. Chem. Lett. 2012, 3, 673–677
- ⁵ 151 K.Y. Lee, R. Hahn, M. Altomare, E. Selli and P. Schmuki, *Adv. Mater*.2013, **25**, 6133–6137
- H. Chen, S. Chen, X. Quan, H.T. Yu, H.M. Zhao and Y.B.
 Zhang, J. Phys. Chem. C, 2008, 112 (25), 9285–9290.
- 153 S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky 10 and M.Moskovits, *Nat. Nanotechnol*, 2013, **8**, 247–251
- 154 S. N.Basahel, K.Y.Lee, R.Hahn, P.Schmuki, S.M.Bawakeda and S.A. Al-Thabaiti, Chem. Commun. 2014, **48**, 6123-6125.
- 155 Y. Di, X.C. Wang, A. Thomas and M. Antonietti, *ChemCatChem*, 2010, 2, 834 – 838.
- 15 156 H.Y. Zhu, X. Chen, Z.F. Zheng, X.B. Ke, E. Jaatinen, J.C. Zhao, C. Guo, T.F. Xie and D.J. Wang, *Chem. Commun.*,2009, 7524–7526.
- 157 N.Y. Cheng, J.Q. Tian, Q. Liu, C.J. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi and X.P. Sun, ACS Appl. Mater. Interfaces., 2013, 5, 6815–6819.
- 158 Y.X. Yang, Y.N. Guo, F.Y. Liu, X. Yuan, Y.H. Guo, S.Q. Zhang, W. Guo and M.X. Huo, *Appl. Catal. B: Environ.*, 2013, **142–143**, 828–837.
- 159 X.J. Bai, R.L. Zong, C.X. Li, D. Liu, Y.F. Liu and Y.F. Zhu, *Appl. Catal. B: Environ.*, 2014, **147**, 82–91.
- 160 C. Chang, Y. Fu, M. Hu, C.y. Wang, Gq. Shan and L.Y. Zhu, *Appl. Catal. B: Environ.*, 2013,**142–143**, 553–560.
- 161 X.H.Li, X.C.Wang and M. Antonietti, *Chem. Sci.*, 2012, 3, 2170– 2174.
- 30 162 D.B. Ingram, P. Christopher, J.L. Bauer and S. Linic, ACS *Catalysis.*, 2011, **1**, 1441–1447.
- 163 S.W. Cao, Z. Yin, J. Barber, F.Y.C. Boey, S.C.J. Loo, C. Xue, *ACS Appl. Mater. Interfaces.*, 2011, **4**, 418–423.
- 164 J. Cao, Y.J. Zhao, H.L. Lin, B.Y. Xu and S.F. Chen, *Mater. Res.* ³⁵ *Bull.*, 2013, **48**, 3873–3880.
- 165 B. Chai, T.Y. Peng, J. Mao, K. Li and L. Zan, *Phys. Chem. Chem. Phys.*, 2012, **14**, 16745–16752.
- 166 S. Obregón and G. Colón, *Appl.Catal.B:Environ.*, 2014, **144**, 775–782.
- 40 167 J.T. Jin, X.G. Fu,Qiao Liu and J.Y. Zhang, J. Mater. Chem. A., 2013, 1, 10538–10545.
- 168 J.G. Yu, J.C. Yu, M. K. P. Leung, W. K. Ho, B. Cheng, X. J. Zhao and J. C. Zhao, *J. Catal.*, 2003, **217**, 69–78.
- 169 J.G. Yu, W.G. Wang, B. Cheng and B.L. Su, J. Phys. Chem. C., 2009,
 45 113, 6743–6750.
- 170 J. G. Yu, L. J. Zhang, B. Cheng and Y. R. Su, J. Phys. Chem. C, 2007, **111**, 10582–10589.

- 171 J. C. Yu, W. K. Ho, J. G. Yu, H. Yip, P. K. Wong and J. C. Zhao, *Environ. Sci. Technol.* 2005, **39**, 1175–1179.
- ⁵⁰ 172 J. G. Yu, Y. R. Su and B. Cheng, *Adv. Funct. Mater.*, 2007, **17**, 1984–1990.
 - 173 B. Cheng, Y. Le and J. G. Yu, J. Hazard. Mater., 2010,177, 971– 977.
 - 174 J. G. Yu, G. P. Dai and B. B. Huang, J. Phys. Chem. C, 2009, 113, 16394–16401.
 - 175 J. G. Yu, Q. J. Xiang, J. R. Ran and S. Mann, *CrystEngComm.*, 2010,**12**, 872–879.
 - 176 W.D. Zhang, Y.J. Sun, F. Dong, W. Zhang, S. Duan and Q. Zhang, *Dalton Trans.*,2014,43, 12026–12036.
- In Sci., 2011, 4, 1364–1371.
 J. G. Yu, Y. Hai and M. Jaroniec, J. Colloid Interf.Sci., 2011, 357, 223–228.
 - 179 H.J. Yan, Y. Chen, and S.M. Xu, Int. J. Hydrogen. Energ. 2012, 37,125–133.
- 65 180 S.W. Cao, and J.G. Yu, J. Phys. Chem. Lett. 2014, 5, 2101–2107.
 181 S. Patchkovskii, J.S.Tse, S. N. Yurchenko, L. Zhechkov, T. Heine
 - and G.Seifert, *P. Natl. Acad. Sci.USA*.,2005, **102**, 10439–10444. S.C. Roy, O.K. Varghese, M. Paulose and C.A. Grimes, *ACS Nano*.,
- 2010, **4**, 1259–1278. 70 183 H.F. Cheng, B.B. Huang, Y.Y. Liu, Z.Y. Wang, X.Y. Qin, X.Y.
 - Zhang, Y. Dai, *Chem. Commun.* 2012, **48**, 9729–9731.
 X.Y. Chen, Y. Zhou, Q. Liu, Z.D. Li, J.G. Liu and Z.G. Zou, *ACS Appl. Mater. Interfaces.*, 2012, **4**,3372–3377.
 - 185 H. Xu, S.X. Ouyang, P. Li, T. Kako and J.H. Ye, ACS Appl. Mater. Interfaces., 2013, 5,1348–1354.
- 186 X.L. Liang, X. Dong, G.D. Lin and H.B. Zhang, Appl. Catal. B: Environ., 2009, 88, 315–322.