Physical constants/conversion factors

 $1 \text{ N} = 1 \text{ kg m s}^{-2}$ $1 J = 1 N m = 1 kg m^2 s^{-2}$ $1 \text{ bar} = 10^5 \text{ N m}^{-2}$ $1 \text{ atm} = 101325 \text{ N m}^{-2}$ 1 bar = 750.06 Torr 1 cal = 4.184 J $1 \text{ C} = 1 \text{ A s}, 1 \text{ V} = 1 \text{ J C}^{-1}, 1 \Omega = 1 \text{ V A}^{-1}$ $R = 8.3145 \text{ J K}^{-1} \text{ mol}^{-1} = 0.08315 \text{ (L atm) (mol K)}^{-1}$ $N_A = 6.022136*10^{23} \text{ mol}^{-1}$ $1 L = 0.001 \text{ m}^3$ $k = 1.38*10^{-23} \text{ J/K}, kN = Rn$ 10 L bar = 1 kJ

Laws of thermodynamics

0th law – If A and B are in thermal equilibrium and B and C are in thermal equilibrium, then A and C are in thermal equilibrium. Defines Kelvin scale.

1st law – U is conserved. dw + dq = dU

 2^{nd} law – defines entropy and dir of time. $\Delta S = \int \frac{dq_{rev}}{T}$

 3^{rd} law – absolute scale. $S \to 0$ as $T \to 0$ for pure crystal.

Open: mass and energy can transfer Closed: only energy, not mass Isolated: neither energy nor mass

Extensive: depend on size of system (n, m, V) Intensive: independent of size (T, p, V_{bar})

pV = nRT

van der Waals: $(p + \frac{a}{\overline{V}^2})(\overline{V} - b) = RT$

$$w = F \cdot \ell$$
, also $w = \int_{\ell_i}^{\ell_f} k \ell \cdot d\ell = \frac{1}{2} k (\ell_f^2 - \ell_i^2)$

Expansion work: $w = -(p_{ext}A)\ell = -p_{ext}\Delta V$

Surface work: $dw = \gamma_{ext} dA$ (where γ_{ext} is surf tens in J/m²)

Electrostatic work: dw = VdeIf heat enters system, it is positive

If system does work on surroundings, w < 0

If surroundings do work on system, w > 0

 $\oint dw$ may be, but is not necessarily 0

$$dq = C_{path}dT$$
, $C_p > C_v$

$$\oint dw + dq = 0 = dU$$
, so

$$\Delta U = \int_{1}^{2} dU = U_{2} - U_{1} = q + w$$

Isothermal gas expansion

1. if
$$p_{\text{ext}} = 0$$
, $w = -p_{\text{ext}} \Delta V = 0$, $\Delta U = q$

2. if
$$p_{\text{ext}} = p_2$$
, $w = -p_2 \Delta V$

3. if
$$p_{\text{ext}} = p$$
 (reversible), $w = -\int_{V_1}^{V_2} \frac{nRT}{V} dV$

$$-\int_{V_1}^{V_2} \frac{nRT}{V} dV = -nRT \ln \frac{V_2}{V_1} = nRT \ln \frac{p_2}{p_1}$$

$$dU = C_{path}dT - p_{ext}dV = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

Constraints:

reversible -- $dU = dq_{rev} - p_{ext}dV$

isolated --
$$dq = dw = \Delta U = 0$$

adiabatic --
$$dq = 0 \Rightarrow dU = dw$$

constant V --
$$dw = 0 \Rightarrow dU = dq_V = C_V dt$$

$$dU = C_V dT - C_V \eta_J dV$$

for ideal gas, $\Delta U=0$ for any isoT exp/comp also for isoT, $\Delta H = \Delta U + nR\Delta T = 0$ for ideal gas, $\eta_J=0$

Joule free expansion

q = 0 (adiabatic), w = 0 ($p_{ext} = 0$) isothermal, so ΔU , ΔH are 0 A constant internal energy

Joule-Thomson expansion

 $H \equiv U + pV$, $\Delta H = q_p$ for reversible const P process

$$\left(\frac{\partial H}{\partial T}\right)_{p} = Cp , dH = C_{p}dT - C_{p}\mu_{JT}dp$$

For an ideal gas $\overline{C}_p = \overline{C}_V + R$, $C_v \Delta T = C_p \Delta T + p \Delta V$

For an ideal gas $dU = \overline{C}_V dT$, $dH = \overline{C}_D dT$

Reversible Adiabatic Expansion/Compression

Monatomic IG:
$$\overline{C}_V = \frac{3}{2}R$$
, $\overline{C}_p = \frac{5}{2}R$, $\frac{C_p}{C_V} \equiv \gamma = \frac{5}{3}$

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{V_1}{V_2}\right)^{\gamma - 1} \text{ and } \left(\frac{P_2}{P_1}\right) = \left(\frac{V_1}{V_2}\right)^{\gamma}$$

Adiabatic expansion, gas cools Adiabatic compression, gas heats up

Irreversible Adiabatic Expansion/Compression

$$T_2(C_V + R) = T_1 \left(C_V + \frac{P_2}{P_1} R \right)$$
 where $p_{\text{ext}} = p_2$

 $(-w_{rev}) \ge (-w_{irrev}) - less$ work recovered from irrev process

Cycles

 ΔU , ΔH are state functions dq, dw are not state functions

Thermochemistry

$$\Delta H_{rx} = \sum_{i} v_{i} \Delta H_{f}^{\circ} (\text{products}) - \sum_{i} v_{i} \Delta H_{f}^{\circ} (\text{reactants})$$

 $\begin{array}{l} \Delta H_{rx} < 0, \, q_p < 0, \, exothermic; \, \Delta H_{rx} > 0, \, q_p > 0, \, endothermic \\ \Delta H_{rx} \, is \, the \, \Delta H \, \, for \, isothermal \, reaction \, at \, constant \, p \\ \Delta H_f \, is \, the \, \Delta H \, \, for \, the \, creation \, of \, 1 \, \, mole \, \, of \, compound \end{array}$

Calorimetry

$$\Delta H_{rx}(T_1) = -\int_{T_1}^{T_2} C_p(\text{Prod+Cal})dT \text{ (for constant P)}$$

$$\Delta H_{rx}(T_1) = -\int_{T_1}^{T_2} C_V(\text{prod+cal})dT + RT_1 \Delta n_{gas} \text{ (const.)}$$

$$\Delta H_{rx}(T_2) = \Delta H_{rx}(T_1) + \int_{T_1}^{T_2} \Delta C_p dT$$

$$\Delta U_{rxn} = \Delta H_{rxn} - \Delta pV = \Delta H_{rxn} - \Delta n_{gas} RT$$

Entropy

$$\oint \frac{dq_{rev}}{T} = 0, \oint \frac{dq_{irrev}}{T} < 0$$

$$\int \frac{dq_{rev}}{T} = \int dS$$

$$\varepsilon = 1 + \frac{q_2}{q_1} = 1 - \frac{T_2}{T_1}$$

for isolated systems, $\Delta S > 0$ – spontaneous, irreversible, $\Delta S = 0$, reversible (or equilibrium)

$$\Delta S = S_2 - S_1 = \int_1^2 \frac{dq_{rev}}{T}$$

Entropy – Joule expansion of IG

$$\Delta S_{back} = \int \frac{dq_{rev}}{T} = -\int \frac{dw}{T} = \int_{V_1}^{V_2} \frac{RdV}{V} = R \ln \left(\frac{V_2}{V_1} \right)$$

Entropy – Reversible expansion of IG

$$\Delta S = \int \frac{dq_{rev}}{T} = \int p dV = \frac{1}{T} \int_{V_1}^{V_2} \frac{RT dV}{V} = R \ln \left(\frac{p_1}{p_2} \right)$$

Entropy – Mixing of IGs at constant T, p

$$\Delta S_{mix} = -\int \frac{dq_{rev}}{T} = -nR[X_A \ln X_A + X_B \ln X_B]$$

where
$$X_A = \frac{n_A}{n_{tot}} = \frac{V_A}{V_{tot}}$$

Entropy – Heating/cooling at constant V

$$\Delta S = \int_{T_1}^{T_2} \frac{C_V dT}{T} = C_V \ln \frac{T_2}{T_1}$$

Entropy – Heating/cooling at constant p

$$\Delta S = \int_{T_1}^{T_2} \frac{C_p dT}{T} = C_p \ln \frac{T_2}{T_1}$$

Entropy – Reversible phase change at constant T, p

$$\Delta S_{vap} = \frac{q_p^{vap}}{T_h} = \frac{\Delta H_{vap}}{T_h}$$

Entropy – Irreversible phase change at constant T, p

$$\Delta S = \frac{-\Delta H_{fus}}{T} + \int_{T_1}^{T_{fus}} \Delta C_p \frac{dT}{T} = [C_p(\ell) - C_p(s)] \ln \frac{T_{fus}}{T_1}$$

Surroundings and Universe (if T, p surroundings constant)

$$\Delta S_{surr} = \frac{\Delta H_{sys}}{T}$$
, $\Delta S_{universe} = \Delta S_{sys} + \Delta S_{surr}$

if reversible, $\Delta S_{univ} = 0$

Carnot Cycle

Step	
1→2	$\Delta U = 0 = q_1 + w_1 = \int_1^2 p dV = RT_1 \ln \frac{V_2}{V_1}$
2→3	$\Delta U = w_1 = C_v (T_2 - T_1)$
3→4	$\Delta U = 0 = -w_1 = \int_4^3 p dV = RT_2 \ln \frac{V_4}{V_3}$
4→1	$\Delta U = w_2 = C_v (T_1 - T_2)$

$$\frac{q_2}{q_1} = \frac{T_2 \ln(V_4/V_3)}{T_1 \ln(V_2/V_1)}, \quad \frac{T_1}{T_2} = \left(\frac{V_4}{V_1}\right)^{\gamma - 1} = \left(\frac{V_3}{V_2}\right)^{\gamma - 1}$$

$$\frac{q_1}{T_1} + \frac{q_2}{T_2} = \oint \frac{dq_{rev}}{T} = 0$$

Fundamental Equations

dU = TdS - pdV (valid for any closed system, rev/irrev)

$$dH = TdS + Vdp$$

Generally,
$$dU + p_{ext}dV - T_{surr}dS < 0$$

Helmholtz free energy: A = U - TS

Under constant T=T_{surr}, constant V, dA<0 spontaneous

Gibbs free energy: G = H - TS = A + pV

Under constant T=T_{surr} and p=p_{ext}, dG<0 spontaneous

Fundamental Equations

true for closed systems, pV work only $dU = TdS - pdV \Rightarrow U = H - pV$ $dH = TdS + Vdp \Rightarrow H = G + TS$ $dA = -SdT - pdV \Rightarrow A = U - TS$ $dG = -SdT + pdV \Rightarrow G = U - ST + pV$ $d\mu = -SdT + Vdp$ at constant T, $\left(\frac{\partial \mu}{\partial p}\right)_T = \overline{V}$ at constant p, $\left(\frac{\partial \Delta G}{\partial T}\right)_T = -\Delta S$ et cetera!

For ideal gas

$$\overline{G}(T, p_2) = \overline{G}(T, p_1) + \int_{P_1}^{P_2} \frac{RT}{p} dp$$

$$\overline{S}(T,p) = \overline{S}^{\circ}(T) - R \ln \frac{p}{p^{\circ}}$$

For liquid/solid, V is small, so G(T) only

Define
$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,p,n_{j=1}} = \overline{G}_i$$

$$G = \sum_i n_i \overline{G}_i = \sum_i \mu_i n_i$$

but also partial H partial n, partial A partial n... in each case keeping constant the nat var of the function.

For open systems

$$dU = Tds - pdV + \sum_{i} \mu_{i} dn_{i}$$

$$dH = Tds + Vdp + \sum_{i} \mu_{i} dn_{i}$$

$$dA = -SdT - pdV + \sum_{i} \mu_{i} dn_{i}$$

$$dG = -SdT + pdV + \sum_{i} \mu_{i} dn_{i}$$

Chemical potential at equilibrium is the same everywhere in a system.

$$\begin{split} &\mu_A(mix,\,T,\,p_{tot}) = \mu_A\;(pure,\,T,\,p_{tot}) + RT\;ln\;X_A\\ &(note\;that\;mole\;fraction < 1,\,so\;\mu_{mix} < \mu_{pure}\\ &This\;is\;due\;to\;entropy\;of\;mixing. \end{split}$$

$$\mu(T, p) = \mu^{\circ}(T) + RT \ln \frac{p}{p^{\circ}}$$

$$\Delta G^{\circ} = \mu_{g}^{\circ} - \mu_{\ell}^{\circ} = -RT \ln \frac{p}{p^{\circ}} \text{ (change in state)}$$

$$\Delta G_{mix}^{\circ} = RT(X_{A} \ln X_{A} + X_{B} \ln X_{B})$$

$$K_{p} = \frac{p_{C}^{\nu_{c}} p_{D}^{\nu_{D}}}{p_{A}^{\nu_{A}} p_{B}^{\nu_{B}}} = p^{\Delta \nu} \frac{X_{C}^{\nu_{c}} X_{D}^{\nu_{D}}}{X_{A}^{\nu_{A}} X_{B}^{\nu_{B}}} = e^{\frac{-\Delta G^{\circ}}{RT}}$$

Making ICE charts

Write initial # moles

Write change – must balance stoichiometrically Solve for x, plug x back into change in moles

Quadratic formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For solutions:

$$\begin{split} K_{eq} &= \frac{[C]^{v_C}[D]^{v_D}}{[A]^{v_A}[B]^{v_B}} = e^{\frac{-\Delta G^\circ}{RT}} \\ \text{also, } & \mu_A(T,p,[A]) = \mu_A^\circ(T,p) + RT \ln[A] \\ & \frac{d \ln K(T)}{dT} = \frac{\Delta H^\circ(T)}{RT^2}, \ \Delta G^\circ = RT \ln K_p \\ & \ln K(T_2) = \ln K(T_1) + \int_{T_1}^{T_2} \frac{\Delta H^\circ(T_1) + \Delta C_p(T_2 - T_1)}{RT^2} dT \\ \text{or, if } \Delta \text{H}^\circ \text{ assumed independent of T and } \Delta C_p \text{ negligible,} \end{split}$$

$$\ln K(T_2) \approx \ln K(T_1) + \frac{\Delta H^{\circ}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$\Delta H^{\circ}(T)$	$T_2_T_1$	$K_p(T_2)_K_p(T_1)$	Equil shifts	_thermic
negative	>	<	reactants	exo
positive	>	>	products	endo

Heterogeneous equilibria – equilibrium constant includes only gases, but ΔG° includes all products and reactants.

Most stable compound at (T,p) has lowest (most negative) molar $G_{\rm f}$

Function	What is kept constant?	Greater than/less than
dU	S, V, n_i	≤ 0
dA	T, V, n_i	≤ 0
dH	S, P, n_i	≤ 0
dG	T, P, n_i	≤ 0

Boltzmann equation

 $S = k \ln \Omega$ where Ω is multiplicity (# poss. states)

$$S = -k \sum_{i=1}^{t} p_i \ln p_i$$

$$\Omega = \frac{N!}{n_1! \times n_2! \times ... n_i!}$$
 (general case; $n_i =$ degeneracy)

"number of ways to mix up N things with degeneracies" if no degeneracy, then just N!

$$\Omega(k, N) = {N \choose k} = \frac{N!}{k!(N-k)!}$$
 (binomial case, N=n_{tot})

"number of ways to pick k things from N objects" N^k "sequence of k items, each with N deg free" maximizing Ω maximizes S

$$p_A = \frac{n_A}{N}, \langle \varepsilon \rangle = \sum_{all} \varepsilon_i p_i$$

Stirling's approximation

$$n! \approx \left(\frac{n}{e}\right)^n$$
, $\ln n! = n \ln n - n$, $\ln n^x = x \ln n$

Boltzmann distribution law

$$p_j^* = Q^{-1} \exp\left(-\frac{E_j}{kT}\right), \ Q \equiv \sum_{j=1}^{L} \exp\left(-\frac{E_j}{kT}\right)$$

relative populations: $\frac{p_i^*}{p_j^*} = \exp\left(\frac{-(E_i - E_j)}{kT}\right)$

As $T \rightarrow \infty$ or $E_j \rightarrow 0$, all states accessible As $T \rightarrow 0$ or $E_j \rightarrow \infty$, only ground state accessible

More on the Partition Function

$$Q_{sys} = \prod_{i} q_{i}$$

For N independent, distinguishable particles, $Q = q^N$

For N independent, indistinguishable particles, $Q = \frac{q^N}{N!}$

$$\beta = \frac{1}{kT}$$
, $\langle E \rangle = \frac{U}{N}$, so $U = kT^2 \left(\frac{\partial \ln Q}{\partial T} \right)$

$$S = k \ln Q + \frac{U}{T}, \ A = -kT \ln Q$$

$$\mu = -kT \left(\frac{\partial \ln Q}{\partial N} \right)_{T,V}, \ P = kT \left(\frac{\partial \ln Q}{\partial V} \right)_{T,N}$$

Absolute Entropy

$$\overline{S}(p,T) = \overline{S}^{\circ}(T) - R \ln \frac{p}{p^{\circ}}$$

At the given reference pressure, $S^{\circ}(T)$ =

$$\overline{S}^{\circ}(0K) + \int_{0}^{T_{m}} \frac{\overline{C}_{p}(s)dT}{T} + \frac{\Delta \overline{H}_{fus}}{T_{m}} + \int_{T_{m}}^{T_{b}} \frac{\overline{C}_{p}(\ell)dT}{T} + \frac{\Delta \overline{H}_{vap}}{T_{b}} + \int_{T_{b}}^{T} \frac{\overline{C}_{p}(g)dT}{T}$$

Integrate to whatever temperature desired (and adjust phase changes accordingly)

For every chemically homogeneous substance in a pure crystalline state, as $T\rightarrow 0$ K, $S\rightarrow 0$.

Phase Equilibria

$$\left(\frac{dp}{dT}\right)_{coexist} = \left[\frac{\overline{S}_{\beta} - \overline{S}_{\alpha}}{\overline{V}_{\beta} - \overline{V}_{\alpha}}\right] = \left(\frac{\Delta S}{\Delta V}\right)_{\alpha \to \beta} = \left(\frac{\Delta H}{T\Delta V}\right)_{\alpha \to \beta}$$

$$\Delta p \cong \frac{\Delta H_{fits}}{\Delta V_{fits}} \cdot \frac{\Delta T_{m}}{T_{m}} \text{ (for melting point increase)}$$

Clausius-Clapeyron:

$$\left(\frac{d \ln p}{dT}\right) \approx \frac{\Delta \overline{H}}{RT^2} \Rightarrow \ln \frac{p_2}{p_1} = \frac{\Delta \overline{H}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\Delta H_{sub} = \Delta H_{vap} - \Delta H_{fus} \text{ (watch signs!!)}$$

$$\Delta V_{fus} = \frac{1}{\rho_e} - \frac{1}{\rho_e}$$

liquid mole fraction $-x_A$ gas mole fraction $-y_A$ F = C - P + 2

Raoult's Law $(x_A \rightarrow 1)$

$$p_{A} = p_{A}^{*} x_{A} = p_{A}^{*} (1 - x_{B})$$

$$y_{C} = \frac{x_{C} p_{C}^{*}}{p_{B}^{*} + (p_{C}^{*} - p_{B}^{*}) x_{C}}$$

$$x_{C} = \frac{y_{C}p_{B}^{*}}{p_{C}^{*} + (p_{B}^{*} - p_{C}^{*})y_{C}}$$

$$p = \frac{p_B^* p_C^*}{p_C^* + (p_B^* - p_C^*) y_C} = \frac{x_C p_C^*}{y_C}$$

Constructing T-x diagrams

1. Use Clausius-Clapeyron

2.
$$p = 1$$
 atm = 1.013 bar

$$3. \ln \frac{p}{p_0} = \frac{\Delta H_{vap}}{RT} + C$$

4. Use Raoult's Law

If A is more volatile than B, then $T_A^* < T_B^*$ temp at which pure A has vapor pressure = p

$$x_A = \frac{p - p_B^*}{p_A^* - p_B^*}, \ y_B = \frac{x_B p_B^*}{p}$$

For an ideal solution,

$$\mu_i(\ell, T, p) = \mu_i^*(\ell, T, p) + RT \ln x_i$$

In non-ideal solutions, calculate $\Delta u = 2u_{AB} - (u_{AA} + u_{BB})$ if $\Delta u > 0$: positive deviation. like associates with like. p > Raoult. Most common.

if $\Delta u < 0$: negative deviation. mixing favored. p < Raoult. If there is a minimum on coexistence curves, then dew line and bubble line touch – azeotrope.

Henry's Law $(x_A \rightarrow 0)$

 $p_A = x_A K_A$ where K is empirical constant for positive deviations, K > p star for negative deviations, K < p star Important terms:

Mole fraction

 $\begin{aligned} & Molality - m_B = (moles \ solute)/(\textbf{kg} \ solvent) = n_B/(n_A M_A) \\ & Molarity - \check{c} = n_B/V \end{aligned}$

Colligative Properties

- 1. Vapor pressure lowering: $\Delta p_A = p_A p_A^* = -x_B p_A^*$
- 2. Boiling point elevation: $\Delta T_b = T_b T_b^* = K_b m_B$

where
$$K_b = \frac{M_A R (T_b^*)^2}{\Delta H_{vap}}$$

3. Freezing point depression: $\Delta T_f = T_f - T_f^* = -K_f m_{\rm B}$

where
$$K_f = \frac{M_A R (T_f^*)^2}{\Delta H_{freezing}}$$

4. Osmotic pressure: $\pi = RT\tilde{c}_B$ (and $\pi V = RTn_B$) also $\pi = \rho gh$

Rate of reaction if $aA + bB \rightarrow cC + dD$

$$-\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt} = k\prod_{i=1}^{N}C_{i}^{\gamma_{i}}$$

 $t_{1/2}$ is the time at which $[A]_t = 0.5[A]_0$

Zero order reaction $(A \rightarrow products)$

$$[A]_t = [A]_0 - kt$$
 and $t_{1/2} = [A]_0/2k$

First order reaction ($A \rightarrow products$)

$$[A]_t = [A]_0 e^{-kt}, \ln[A]_t = -kt + \ln[A]_0, t_{1/2} = \frac{\ln 2}{k}$$

Second order reaction $(2A \rightarrow products)$

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + (2)kt , t_{1/2} = \frac{1}{2k[A]_0}$$

Second order reaction $(A + B \rightarrow products)$

$$kt = \frac{1}{[A]_0 - [B]_0} \ln \frac{[A]_t [B]_0}{[A]_0 [B]_t}$$

special case i: [A]₀=[B]₀. Then $\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt$, [A]_t=[B]t

special case ii: $[B]_0 << [A]_0$. Then $[A]_t \approx [A]_0$, $[B]_t = [B]_0 e^{-k^2 t}$ (since [A] is \sim constant, $k' = [A]_0 k$, and d[B]/dt = k'[B])

Parallel first-order reactions

 $C \xleftarrow{k_2} A \xrightarrow{k_1} B$ (bucket with two holes)

$$[A]_{t} = [A]_{0}e^{-(k_{1}+k_{2})t}, [B]_{t} = \frac{k_{1}[A]_{0}}{k_{1}+k_{2}}(1-e^{-(k_{1}+k_{2})t}),$$

$$[C]_{t} = \frac{k_{2}[A]_{0}}{k_{1} + k_{2}} (1 - e^{-(k_{1} + k_{2})t})$$

Branching ratio: $[B]/[C] = k_1/k_2$ at all t

$$[B]_{\infty} = [A]_0 \frac{k_1}{k_1 + k_2}$$
 and $[C]_{\infty} = [A]_0 \frac{k_2}{k_1 + k_2}$

Parallel first- and second-order reactions

$$A \xrightarrow{k_1} B, 2A \xrightarrow{k_2} C$$

$$[A]_t = \frac{k_1[A]_0}{e^{k_1 t} (k_1 + 2k_2[A]_0) - 2k_2[A]_0}$$

Limiting cases:

i)
$$k_2[A]_0 \ll k_1$$
, then $[A]_t = [A]_0 e^{-kt}$

ii)
$$k_2[A]_0 >> k_1$$
, then $\frac{1}{[A]_t} = \frac{1}{[A]_0} + 2k_2t$

Consecutive reactions

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

$$[A]_{t} = [A]_{0}e^{-kt}, [B]_{t} = \frac{k_{1}[A]_{0}}{k_{2} - k_{1}}(e^{-k_{1}t} - e^{-k_{2}t})$$

$$[C]_{t} = [A]_{0} - [A] - [B] = \left\{ 1 - \frac{1}{k_{2} - k_{1}} (k_{2}e^{-k_{1}t} - k_{1}e^{-k_{2}t}) \right\}$$

$$t_{\text{max}}$$
 at $d[B]/dt = 0$

After [B] reaches [B]max, it's as if [B] isn't there at all

$$t_B^{\text{max}} = \frac{\ln(k_1/k_2)}{k_1 - k_2}, [B]_{\text{max}} = \frac{k_1}{k_2} [A]_0 e^{-k_1 t_B^{\text{max}}}$$

Special cases:

i)
$$k_1 = k_2$$
. $t_B^{\text{max}} = \frac{1}{k_2}$, $[B]_{\text{max}} = \frac{[A]_0}{e}$

ii)
$$\mathbf{k}_1 >> \mathbf{k}_2$$
. $[A]_t = [A]_0 e^{-k_1 t}$, $[B]_t \approx [A]_0 e^{-k_2 t}$

$$[C]_t \approx [A]_0 (1 - e^{-k_2 t})$$
. Looks like $A \xrightarrow{k_2} C$.

iii)
$$k_1 \ll k_2$$
. $[A]_t = [A]_0 e^{-k_1 t}$, $[C]_t \approx [A]_0 (1 - e^{-k_1 t})$

Looks like $A \xrightarrow{k_1} C$ (A \rightarrow B is RDS.)

First-order reversible reactions

$$A \stackrel{k_{-1}}{\longleftarrow} B, A \stackrel{k_1}{\longrightarrow} B$$

$$K_{eq} = \frac{[B]_{eq}}{[A]_{eq}} = e^{-(\Delta G^{\circ}/RT)} = \frac{k_1}{k_{-1}}$$

$$[B]_t = [B]_0 + ([A]_0 - [A]_t)$$

$$[A]_{eq} = \frac{k_{-1}}{k_{1} + k_{-1}} ([B]_{0} + [A]_{0})$$

$$[A]_{t} - [A]_{eq} = ([A]_{0} - [A]_{eq})e^{-(k_{1} + k_{-1})t}$$

$$k_{obs} = k_1 + k_{-1}$$

Higher-order reversible reactions

$$A+B \xrightarrow{k_1} C, A+B \xleftarrow{k_{-1}} C$$

1)Flooding.

If [B]_t=[B]₀ at all times,
$$\frac{d[A]}{dt} = -k'_1[A] + k_{-1}[C]$$

where
$$k_{1}^{'} = k_{1}[B]_{0}$$
, and

$$[A]_t - [A]_{eq} = ([A]_0 - [A]_{eq})e^{-(k_1^{'} + k_{-1})t}$$

plot $k_1[B]_0 + k_{-1} \equiv k_{obs}$ vs $[B]_0$ to get individual k values

 $(k_{obs} \text{ from slope of } ln|A_t-A_{eq}| \text{ vs. t})$

2) Steady State Approximation

 $A \leftarrow \xrightarrow{k_1} B \xrightarrow{k_2} C$ (valid only after B builds to ss value, when $k_2 >> k_1 - B$ is small but not zero)

Assume
$$\frac{d[B]}{dt} = 0$$
, so $[B]_{ss} = \frac{k_1[A]}{k_{-1} + k_2}$

$$[A]_t = [A]_0 e^{-k't}$$
 where $k' = \frac{k_1 k_2}{k_{-1} + k_2} (A \xrightarrow{k'} C)$

3) Pre-Equilibrium Approximation

 $A \leftarrow \xrightarrow{k_1} B \xrightarrow{k_2} C$ (valid when when $k_2 \ll k_1 + k_{-1} - B$ is formed faster than it is destroyed)

Assume
$$\frac{k_1}{k_{-1}} \approx \frac{[B]}{[A]}$$
, so $\frac{d[C]}{dt} = \frac{k_1 k_2}{k_{-1}} [A]$

$$[A]_t = [A]_0 e^{-k't}$$
 where $k' = \frac{k_1 k_2}{k_{-1}} (A \xrightarrow{k'} C)$

Free radical chain length: rate of product formation/rate of initial radical formation

Explosions happen when concentration of reactive intermediates becomes large (SS approx fails)

$$k(T) = e^{-\Delta H^{\circ}/RT} e^{\Delta S^{\circ}/R} = A e^{-E_a/RT}$$
$$\ln k = -\frac{E_a}{RT} + \ln A$$

As T increases, collisions happen more frequently and harder. Pre-exponential constant is not highly dept on T Ea – Joules/mol. A – conc^n-1/second

N molecules, 3N-6 internal coordinates

Transition state is the highest energy point on the minimum energy path

$$\Delta H_{rxn} = E_a(for) - E_a(rev)$$

Catalysis

Catalysis can work by $\downarrow E_a$ (enthalpy) or $\uparrow A$ (entropy) For example, blocking active site is entropic, changing charge on active site is enthalpic

Catalysts change only rate. K_{eq} , ΔH , ΔS , ΔG unchanged

$$A + B \xrightarrow{k_1} 2B$$

at t_{infl} , $\frac{d^2[B]}{dt^2} = 0$. So $t_{infl} = \frac{\ln([A]_0/[B]_0)}{k_1([A]_0 + [B]_0)}$
because $[A]_0 + [B]_0 - 2[B] = 0$.

$$[B]_{t_{\text{inf}}} = \frac{[A]_0 + [B]_0}{2}$$

i) very early time, $kt([A]_0+[B]_0) << 1$.

$$[B] = \frac{[B]_0}{1 - kt[A]_0} \approx [B]_0 (1 - kt[A]_0)$$

ii) early time, $e^k t([A]_0 + [B]_0) \ll [A]_0 / [B]_0$

$$[B] \approx \frac{[B]_0([A]_0 + [B]_0)}{[A]_0} e^{kt([A]_0 + [B]_0)}$$

iii) late time, $e^{kt}([A]_0+[B]_0) \le [A]_0/[B]_0$ $[B] = [A]_0 + [B]_0$

Predator-Prey (Lotka-Volterra)

A = duck food, X = ducks, Y = wolves

Michaelis-Menten

$$[ES]_{ss} = \frac{[E]_0[S]}{[S] + \frac{k_{-1} + k_2}{k_1}}, [E]_0 = [E] + [ES]$$

$$\frac{dP}{dt} = k_2 [ES]_{ss} = \frac{k_{cat} [E]_0 [S]}{[S] + K_m}$$

K_m units: concentration

 $k_2 = k_{cat} = turnover number$ max # product molecules / # enzyme molecules

If an enzyme works on two S, producing two products, the ratio will be

$$\frac{(k_{cat}/K_m)_A[S_A]}{(k_{cat}/K_m)_B[S_B]} = \frac{v_A}{v_B}$$

For inhibition,
$$v = \frac{k_2[S][E]_0}{1 + \frac{[S]}{K_S} + \frac{[I]}{K_I}}$$
 where $K_S = \frac{k_2 + k_{-1}}{k_1}$

$$\begin{array}{c|c}
 & \text{ES} & \text{(High pH, basic form)} \\
 & \downarrow & \downarrow \\
 & \text{HES} \longrightarrow \text{HE} + P \\
 & \downarrow & \downarrow \\
 & \text{HES} \longrightarrow \text{HE} + P
\end{array}$$

$$\begin{array}{c|c}
 & \text{High pH, basic form)} \\
 & \frac{dP}{dt} = \frac{k[E]_0}{1 + \frac{K_B}{[H^+]} + \frac{[H^+]}{K_A}}$$

Useful Catalysis Parameters

$$\frac{1}{v} = \frac{K_m}{v_{\text{max}}} \frac{1}{[S]} + \frac{1}{v_{\text{max}}}$$

$$\frac{d[P]}{dt} = \frac{k_{cat}}{K_m} [E]_0 [S] \text{ when [S]} << \text{Km}$$

$$\frac{d[P]}{dt} = k_{cat} [E]_0 \text{ when [S]} >> \text{Km}$$

Chemical Oscillations

Occur with two autocatalytic steps Get a deviation δ above and below $[B]_{ss}$ and $[C]_{ss}$