EXAM 1

Physical constants/conversion factors
IN=1kgms~
1J=1Nm=1kgm?s?

1 bar=10° N m™

1 atm= 101325 N m™

1 bar = 750.06 Torr

1cal=4.184]
1C=1As,1V=1JC"1Q=1VA"
R =28.3145J K" mol'=0.08315 (L atm) (mol K)"
Na = 6.022136*10* mol™!

1L=0.001 m’

k=1.38*%10% J/K, kN = Rn
10Lbar=1kJ

Laws of thermodynamics

0™ law — If A and B are in thermal equilibrium and B and C
are in thermal equilibrium, then A and C are in thermal
equilibrium. Defines Kelvin scale.

1¥law — U is conserved. dw+dg =dU

d
2" Jaw — defines entropy and dir of time. AS = j Grer

3" law — absolute scale. S — 0 as T — 0 for pure crystal.

Open: mass and energy can transfer
Closed: only energy, not mass
Isolated: neither energy nor mass

Extensive: depend on size of system (n, m, V)
Intensive: independent of size (T, p, Viar)

pV =nRT
van der Waals: (p + %)(17 —-b)=RT

w=F -/ also w=j;"kz-d£=%k(£§. —07)

Expansion work: w=—(p, A =-p, AV
Surface work: dw =y, dA (where y,,, is surf tens in J/m’)

Electrostatic work: dw = Vde

If heat enters system, it is positive

If system does work on surroundings, w <0
If surroundings do work on system, w > 0

CI) dw may be, but is not neccesarily 0
dg=C, .dT , C>C,

path

<}de+dq=0=dU,so
AU = dU=U,~U, =g+w

Isothermal gas expansion
Lifpee=0, w=—p AV =0 ,AU=q

2. if pex=p2, W= —p,AV

3. if pey=p (reversible), w=— j ﬂdV
4 12
dU:CPatth_pexth:(an dT [an dV
or )y ov
Constraints:
reversible -- dU =dq,,, — p,..dV

isolated -- dg =dw=AU =0
adiabatic - dg =0= dU =dw
constant V -- dw=0=dU =dgq,
dU =C,dT -C,n,dV

for ideal gas, AU=0 for any isoT exp/comp

also for isoT, AH= AU + nRAT =0
for ideal gas, ;=0

=C,dt

Joule free expansion

q = 0 (adiabatic), W = 0 (P = 0)
isothermal, so AU, AH are 0

A constant internal energy
process.

s _// s
/I gas :l./:/\'aﬂ\\ 7

rd
N7 IS

g9as (pz, Tz, V2)

gas (,m LW =

Joule-Thomson expansion

Tonf=mr 9= 0 (adiabatic), w =AU =-
A(pV). AH=0.

A constant enthalpy process.

/ *— cdia
| L
porous parfition (throttle)

Enthalpy
H=U+pV, AH =g, for reversible const P process

oH

(a—Tj :Cp, dH=deT—Cp,UJpo
P

Foranideal gas C, =C, + R, C AT = C AT + pAV

For an ideal gas dUZE,,dT, dHZépdT

Reversible Adiabatic Expansion/Compression
3. = 5 C,
~R,C,==R,—2~
2 2 G,

BHE) =4

Adiabatic expansion, gas cools
Adiabatic compression, gas heats up

: = 5
Monatomic IG: C), = =y==
3



Irreversible Adiabatic Expansion/Compression

P
T'Z(CV + R) = Ti (CV +?2RJ Where Pext™—P2
1

(-Wrey) > (-Wirey) — less work recovered from irrev process

Cycles
AU, AH are state functions
dq, dw are not state functions

Thermochemistry

AH, = z v,AH ; (products) —Z V,AH, (reactants)

AH, <0, q, <0, exothermic; AH, > 0, q, > 0, endothermic
AH, is the AH for isothermal reaction at constant p
AHy is the AH for the creation of 1 mole of compound

Calorimetry

AH (T) = —LITZ C,(Prod+Cal)dT (for constant P)

AH,(T}) =~ C, (prod+cal)dT + RT,An,,, (const
v)
AH,(T,) = AH, (T))+ [ AC,dT

AU _ =AH

rxn rxn - ApV = AH}”X}'I - AngasRT

Entropy

dq,., _
jT_de

@ _ 5
9 T,

for isolated systems, AS > 0 — spontaneous, irreversible, AS
= 0, reversible (or equilibrium)

qurev
AS=5,-S, =] =

g=1+

Entropy — Joule expansion of IG

ASback:J'%:_ dw _ VZRd_V:R]n 143
T T WV 14
Entropy — Reversible expansion of IG

AS:I%:IPdV:_ VZM_Rl ( ]
T Ty ,

Entropy — Mixing of IGs at constant T, p
AS,, =-| % =—nR[X,InX,+X,InX,]

n v,
where X, =—4+=—4
ntot I/tot
Entropy — Heating/cooling at constant V
r, C,dT T,
=C, In=>
1
Entropy — Heatmg/cooling at constant p
, C dT T
L —=C,In%
1
Entropy — Reversible phase change at constant T, p
vap
AS, =L =
vap
T, T,

Entropy — Irreversible phase change at constant T, p
—-AH w o dT Ty,
AS =Tf " AC —-[Cp(ﬁ)—Cp(s)]ln%
1

Surroundings and Universe (if T, p surroundings constant)

AHSS
AS,,, =—2, AS

Surr T universe = ALS‘SyS + ASSMV}"
if reversible, AS,,;,= 0
Carnot Cycle
[wmon] a0 "t 4 _
B herme
I P P Y adiabat'-\ ".ladia bat
(L b
G2 isothem (&) 3
OK! -
Step
122 Av—0=g+m =["pav =rr, nl
1 Y,
23 | AU=w =C,(T,-T)
324 AU—0=—w; = [ pav=rr, nle
¢ £
4—1 | AU=w,=C(T,~T,)

g _LIn(,/v) T, _ [ﬂjyl ) (ﬂ]yl

g L@/’ T, | "

IR ER L
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Fundamental Equations

dU =TdS — pdV (valid for any closed system,

rev/irrev)

dH =TdS +Vdp
Generally, dU + p, dV -T, dS <0

surr

Helmholtz free energy: A=U —TS
Under constant T=Tj,,, constant V, dA<0 spontaneous

Gibbs free energy: G=H —TS = A+ pV

Under constant T=T,,, and p=px, dG<0 spontaneous



EXAM 2

Fundamental Equations
true for closed systems, pV work only

dU =TdS — pdV =U =H - pV

dH =TdS+Vdp = H=G+TS
dA=-SdT — pdV = A=U-TS
dG=-8dT + pdV = G=U -ST + pV
du=-8dT +Vdp

at constant T, (a—’uj =V
p ),

OAG
at constant p, [G_Tj =-AS et cetera!
P

For ideal gas
— — B RT
G(T,p2)=G(T,p1)+LI 7dp
_ = p
S(T,p)=S (T)-Rln—

p

For liquid/solid, V is small, so G(T) only

Define p, = (Z—GJ = 5[
n
T,p,nj_l

i

G= Zniai = Z,uini

but also partial H partial n, partial A partial n...
in each case keeping constant the nat var of the function.

For open systems

dU =Tds— pdV + ) pdn,
dH =Tds+Vdp + Zﬂfd”,-
dA=—SdT — pdV + ) y,dn,

dG ==SdT + pdV + > p.dn,

Chemical potential at equilibrium is the same everywhere in

a system.

pa(mix, T, pior) = pa (pure, T, pior) + RT In X,
(note that mole fraction < 1, 50 tmix < Hpure
This is due to entropy of mixing.

u(T,p) = (T)+ RTIn L
p

AG’ = ,u;’, —u, =—RT lnﬁo (change in state)
p

AG,, =RT(X,InX,+X,InX,)

V. _Vp Ve vVp -AG®

K _PcPp _ av Xo Xy —e kT
p V4 AVB V4 Vg
PiPg X' Xy

Making ICE charts

Write initial # moles

Write change — must balance stoichiometrically
Solve for x, plug x back into change in moles

Quadratic formula
o ~b+b* —4ac
2a

For solutions:
_lcrepre _ 2
eq [A]VA [B]VB
also, 1,(T, p,[A]) = 1£,(T, p)+ RT In[4]
dinK(T) AH'(T)
dT  RT*

AG" =RTInK,

n AH"(T,)+AC, (T, - T))
InK(T,)=InK(T)+ jTl — dT
or, if AH® assumed independent of T and AC,, negligible,

sy~ L)

LT
AH®(T) | T, T, | K(T,) Ky(T,) | Equil shifts | thermic
negative > < reactants exo0
positive > > products endo

Heterogeneous equilibria — equilibrium constant includes
only gases, but AG® includes all products and reactants.

Most stable compound at (T,p) has lowest (most negative)
molar G

Function | What is kept constant? | Greater than/less than
du S,V,n <0
dA T, V, n; <0
dH S, P , I <0
dG T, P , I < 0

Boltzmann equation
S =k InQ where Q is multiplicity (# poss. states)

12
S= —kz p,Inp,

i=1

N!
() = ———— (general case; n; = degeneracy)
n'xXn,!x..n!

“number of ways to mix up N things with degeneracies”
if no degeneracy, then just N!




N N!
N :(kj: KN —K)!

“number of ways to pick k things from N objects”
N* “sequence of k items, each with N deg free”
maximizing Q maximizes S

pi=r{e)=2ep,

all
Stirling’s approximation

n
n
n!z(—j ,Inn!'=nlnn—n,Inn" =xlnn
e

Boltzmann distribution law

R

: —(E - E.
p‘ = exp (£, ./)
pj kT

As T—oo or Ej—0, all states accessible
As T—0 or Ej—o0, only ground state accessible

More on the Partition Function
sts = H qi
i

For N independent, distinguishable particles, Q = qN
N
For N independent, indistinguishable particles, Q = 9

N!
ﬂzL,<E>:g,so U=kT2[81LQj
kT N oT

S:kan+%, A=—kTInQ

ﬂ:_kT[aan] ,szT(aanj
ON Jr, oV )y

Absolute Entropy
S(p.T)=5 (T)~Rin-£-
p

At the given reference pressure, S°(T)—

(binomial case, N=n)

Phase Equilibria
d_pj | Sp=Sa | _(AS ~ AH]
ar coexist 17/3 _V‘Z AV a-> TAV a—
AH ;. AT
Ap = -— (for melting point increase)
AVﬁts m

Clausius-Clapeyron:

(dlnpjz AH :m&:ﬂ[l_LJ

dT ) RT? p R\ T,
AH , = AHWP —AHfus (watch signs!!)
L1

p/, ps

S OK)+ I T, T T,

b

Integrate to whatever temperature desired (and adjust phase

changes accordingly)
For every chemically homogeneous substance in a pure
crystalline state, as T—0 K, S—0.

C (s)dT AH/M_"_ I . C,(0)dT AHM,,+ J‘TEp(g)dT
T, T,



EXAM 3

liquid mole fraction — x4
gas mole fraction — yu
F=C-P+2

Raoult’s Law (x4, — 1)
Py=p.x,=p,(1-xp)

Vo =—— 0P c :
Py + (pc _pB)xC
S—
Pe+(Pg—Pc)ye
_ PsPe _ Xepe
pe+(Ps=—pP)ye Ve
Pa Pe(ps—pc) 4

slope @y, =0 .
i / Pa
.P('

gas phase P

slope @y, =1

Constructing T-x diagrams
1. Use Clausius-Clapeyron
2.p=1atm=1.013 bar

&lnﬁ//:éf&2+c
Py RT

4. Use Raoult’s Law

If A is more volatile than B, then T, < T},

temp at which pure A has vapor pressure = p

_ * ¥ %
X, = p* pB* Ly, = 3Ps
Pys—Ps p

For an ideal solution,

w(0,T,p)= 1 ({,T,p)+RT Inx,

In non-ideal solutions, calculate Au = 2uag — (uas + Ugg)
if Au > 0: positive deviation. like associates with like. p >
Raoult. Most common.

if Au < 0: negative deviation. mixing favored. p < Raoult.
If there is a minimum on coexistence curves, then dew line
and bubble line touch — azeotrope.

Henry’s Law (x, — 0)
p, = x,K , where K is empirical constant

for positive deviations, K > p star
for negative deviations, K < p star

Important terms:
Mole fraction
Molality — mp = (moles solute)/(kg solvent) = ng/(naMy)
Molarity — ¢ = ng/V
Colligative Properties
1. Vapor pressure lowering: Ap, = p, — p; =—Xg p;
2. Boiling point elevation: A7, =7, — Tb* =K,m,
*\2

M ,R(T,)

AH

vap

where K, =

3. Freezing point depression: AT, =T, -7, =—K m,

M R(T;)’
freezing

4. Osmotic pressure: 7 = RTC, (and 7V = RTn,)
also 7 = pgh

Rate of reaction if aA + bB — ¢C + dD

N
_ld[A]:_ld[B]zld[C]:ld[D]:kHCiy,-
a dt b dt ¢ dt d dt L

ty, is the time at which [A]; = 0.5[A]y

Zero order reaction (A — products)
[A]c=[A]o — kt and t; = [A]o/2k

First order reaction (A — products)

[A], =[A),e™. In[4], =kt +In[4],. 4, = 1“72

Second order reaction (2A — products)

1 1 1

——=——+kt, t,, =
(4], [4], 2k[ 4],

Second order reaction (A + B — products)

1 [4LIB),
(A1, ~[Bl,  [AL[B],

special case i: [A];=[B]o. Th

1 1
en — = +
(4], [4],
special case ii: [B]y<<[A]y. Then [A]=[A]y, [B]; = [Bloe™"
(since [A] is ~constant, k> = [A]ok, and d[B]/dt = k’[B])

kt , [A]=[B]t

Parallel first-order reactions
C«t2— 4—8 5 B (bucket with two holes)
. k[A] )

A — A e (k|+k2)t’ B M 0 l_e (ky+ky )t ,
[ ]z [ ]0 [ ]z k1+k2( )
[C]t — kz[A]o (1 _ e—(kl+kz )t)

k +k,



Branching ratio: [B]/[C] =k /k, at all t
k
[Bl. =[4], Z —— and [C],, =[4],

1 2

k2
k +k,

Parallel first- and second-order reactions
At 5B 242 >C
i k4],

[ ]t T Rt

et (k, +2k,[A],) - 2k,[ 4],
Limiting cases:
i) ko[Alp << ki, then [4], =[4],e™

1
=—+

4], [4],

11) kz[A]o >> kl, then Zt

Consecutive reactions
Al 5Bt 5C

[4], = [A]oefkt, [B] :M(e—klt )

! k, -k,
1 _ _
[C], =[4], -[4]-[B]=11- (ke —ke ™)
k, -k,
A Lo, )

Cone [c1

[A] ',,,-""’ tmax at d[B]/dt=0
(Bl 5 -\1."’ After [B] reaches

TN [B]max, it’s as if [B]

- isn’t there at all

_In(k kK e
tB :M’[B]max:_[A]Oe kg
kl _kz kz

Special cases:

max 1 A
i) k| =k,. 1, =k—, [B], . :[ e]o
2

=[A],e™ . [B], [4],e ™,

t

ii) k; >>ko. [A4],
[C], =[A4],(1—e™™"). Looks like 4—2—C.

iii) ky << ky. [4], =[A4],e ™, [C], = [4],(1—e™)
Looks like 4——>C (A — Bis RDS.)

First-order reversible reactions
A« —B A4 5B
[B]

—(AG®/RT k
— 4 — ) —

“4] k_

eq -

[B], =[B], + ([ 4], —[4],)
k.,

AL, =5 )
[4], - [4]., = [ 4], - [A]eq)e*(kl+kil)t
kobs = kl + k71

Higher-order reversible reactions
A+B—5C,4+B<«=2—C
1)Flooding.

If [B]=[B], at all times, dc[;] =—k[A]+k_[C]

where k, = k,[B],, and

[4], -[4]., = ([4], —[A]eq)e*(kll+k,1)t
plot k,[B], +k_, =k,,, vs [B, to get individual k values

obs
(kobs from slope of In|Ai-Agg| vs. t)
2) Steady State Approximation
A« s B—% 5 C (valid only after B builds to ss
value, when k, >> k; — B is small but not zero)

Assume B] =0,s0 [B], :M
-k tk
k' . kk ,
[4], =[4],e Kt Where k'= k711+2k2 (A k 5C)

3) Pre-Equilibrium Approximation
A<f sB—% 5 (C (valid when when k, <<k, + k| —
B is formed faster than it is destroyed)

Assume ﬂ ~ @ M — klkz

, SO —_
k., [4] dt k.,

[4], Z[A]Oe_k't where k':% (A—>(0)

-1

[4]



EXAM 4

Free radical chain length: rate of product formation/rate of
initial radical formation

Explosions happen when concentration of reactive
intermediates becomes large (SS approx fails)

k(T)= e_M%TeAS% = Ae_E%T

Ink=- £, +In 4
RT

As T increases, collisions happen more frequently and
harder. Pre-exponential constant is not highly dept on T
Ea — Joules/mol. A — conc”n-1/second

N molecules, 3N-6 internal coordinates

Transition state is the highest energy point on the minimum
energy path

AH_ =E (for)—E (rev)

rxn

Catalysis

Catalysis can work by | E, (enthalpy) or TA (entropy)
For example, blocking active site is entropic, changing
charge on active site is enthalpic

Catalysts change only rate. K.q, AH, AS, AG unchanged

A+B—4 2B

d’[B] _ _ In([4],/[B],)
at ting, 5 — Y. o lLig =

dt k ([4], +[B],)
because [A]y + [B]o— 2[B] = 0.
[B]l‘inf = [A]O ;[B]O
i) very early time, kt([AJo+[B]o)<<l1.
[B],

(B1= g, ~(BL (kAL

ii) early time, e kt([A]p+[Blo) << [A]¢/[Blo
(B]~ [B1, ([ ALy +[By) wcassimn
[A],

iii) late time, e kt([A]o+[Blo) << [A]¢/[Blo
[B]=[Alo+ [Blo

(%] o [YIMAL

[¥lfial

al=
[

o — 1Al
| |
| | ;
/
| 174\ A\ A\
WL, = £+ (55)

- 1 [
\ A = duck fooc{:_X =ducks, Y =
Michaelis-Menten
[S] + ) B

Predator-Prey (Lotka-Volterra) R
il L/
,_,D | wolves
[(BS], = —EhST
k,

d_P — 2[ES]SS — kcat[E]O[S]
dt [S]+K,

K., units: concentration

1 [Sh+Ey 1 Ky 1

E (Bl =Vaa v EELEL ELELELELTL
X “saturated”

——— V| BN T AT

— inES

w

iutial slope ='—‘ﬂﬂ-=lﬂ, when [S]p < Ky
/ Ky, Ky

[5]e=Ku .

(sl
k; = ko = turnover number
max # product molecules / #
enzyme molecules

If an enzyme works on two S,
producing two products, the
ratio will be

-
= B

(kcat /Km)A[SA] _ V_A
(kcat /Km)B[SB] VB
For inhibition, v = % where K, = 2k
I+—+— k,
S KI
ES (High pH, basic form) dP B k[E]O
ol i K, ]
HES —>HE + P 1+ ’ =
S [H'] K,
H,ES (Low pH, acidic form)

Useful Catalysis Parameters

1_K, 1 1
\% VY max [S] Vinax
air]

J =k,,[E], when [S]>>Km
t

Chemical Oscillations
Occur with two autocatalytic steps
Get a deviation 6 above and below [B] and [C]



