ISRN INRIA/RR--5881--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Understanding cache attacks

Anne Canteaut — Cédric Lauradoux — André Seznec

N° 5881
Avril 2006

Thémes COM et SYM

apport
derecherche

Zd I N RIA

ROCQUENCOURT

Understanding cache attacks

Anne Canteaut * , Cédric Lauradoux* , André Seznec

Thémes COM et SYM — Systémes communicants et Systémes symboliques
Projets Codes et Caps

Rapport de recherche n°® 5881 — Avril 2006 — 18 pages

Abstract: This paper points out that both the micro-architecture of the processor and the cache
initial state impact the amount of side-channel information which is provided by analyzing the
cache behaviour during a symmetric encryption. Therefore, the vulnerability of a block cipher
implementation based on lookup tables highly varies with the encryption context and with the
targeted platform. Our results then clarify some simulations reported by Bernstein and show that
they can be reproduced only in a very particular context. However, we point out that some AES
key bits can be recovered even if all lookup tables lie in the cache before each encryption, i.e., if
all cache misses are avoided.

Key-words: Timing attacks, cache attacks, side-channel attacks, AES

* INRIA projet Cobes - B.P. 105 - 78153 Le Chesnay cedex - France -
{Anne.Canteaut,Cedric.Lauradoux}@inria.fr
T IRISA projet Caps - Campus de Beaulieu - 35042 Rennes Cedex - France - seznecQirisa.fr

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Comprendre les attaques sur le cache

Résumé : Cet article montre que la micro-architecture du processeur et I’état initial du cache
influent tous deux sur la quantité d’information fournie par l’analyse du comportement de la
mémoire-cache au cours de ’exécution d’un algorithme de chiffrement symétrique. La vulnérabi-
lité de 'implémentation d’un algorithme par blocs utilisant des tables varie donc fortement avec le
contexte d’utilisation et avec la plate-forme visée. Nos résultats clarifient ainsi les simulations rap-
portées par Bernstein et montrent que celles-ci ne peuvent étre reproduites que dans des contextes
trés particuliers. Toutefois, nous mettons en évidence la possibilité de retrouver certians bits de
clef de 'AES méme dans le cas ou les tables se trouvent dans le cache avant chaque opération de
chiffrement.

Mots-clés : Attaques par canaux cachés, attaques sur le cache, AES

Understanding cache attacks 3

1 Introduction

Side-channel attacks are cryptanalyses which take advantage of some physical information leaked
by a cryptographic device (e.g. timing, power consumption...). Since the first work of Kocher
[12], several classes of side-channel attacks like differential power analysis have been firmly estab-
lished [8]. Until recently, most of these attacks are based on specific features of some software
implementations of the basic transformations involved in the targeted algorithm. For instance, a
timing attack against AES due to Koeune and Quisquater [13] applies if the MixColumns trans-
formation uses a particular implementation of the multiplication in GF(28).

But, it is usually believed that such weaknesses of AES do not appear for optimized implemen-
tations which are dedicated to 32-bit processors. In this case, both MixColumns and SubBytes
transformations are implemented by lookup tables in order to decrease the encryption time. AES
encryption and decryption then mainly consist of a sequence of memory accesses to these lookup
tables. Unfortunately, memory accesses are not always performed in constant time. In particular,
the use of cache memory has a great impact on the latency and on the power consumption of
a memory access. Timing analysis or power analysis may then provide some side-channel infor-
mation which can be exploited by the cryptanalyst, as mentioned by Kocher [12] and Kelsey et
al. [11]. The first practical implementations of side-channel attacks based on the analysis of the
cache behaviour for a block cipher are due to Tsunoo et al. [25] and Page [18]. Then, cache attacks
against AES drew a lot of attention during the last three years [24, 1, 14, 2, 15].

However, all these recent works raise many open questions. Most notably, a relevant comparison
between all presented cache attacks, both in terms of complexity and of practical applicability, is
still missing. For instance, some of these attacks are dedicated to embedded devices, some others
are limited to multi-user systems. Both the physical nature of the used side-channel information
and the assumptions made on the initial state of the cache memory before encryption highly
influence the applicability of a cache attack. Another open problem, which does not arise for
classical side-channel attacks, is to determine which parameters in the micro-architecture of the
processor impact the efficiency of the attack and whether the cryptanalysis can be mounted on all
32-bit processors or not.

In this paper, we show that cache attacks can be classified according to the conditions they
require on the initial state of the cache memory. These conditions influence the practical applica-
bility of the attacks and the type of devices on which they can be mounted. Moreover, we point
out that the natures of the cache effects which are observed by the attacker highly vary with the
cache initial state. Most notably, if each encryption is assumed to be performed from an empty
cache or from a chosen cache initial state, then the timing or power analysis mainly detects cache
misses. Due to the structure of the cache memory, such an attack against AES enables to recover
the most significant bits of each key byte.

Conversely, if the only assumption on the cache initial state is that all lookup tables used
for the encryption lie in the cache before each encryption, then such cache misses do not occur
anymore. This hypothesis corresponds to the situation occurring in different contexts, for instance
in remote timing attacks. However, even in this case, some timing variations may still be observed
on superscalar processors and can be used for mounting an attack. We will show that these
timing characteristics depend on the whole micro-architecture of the processor. The efficiency of
the attack and the positions of the involved key bits then vary with the processor, the compiler
and the implementation. This study partially clarifies some observations reported by Bernstein:
some of the key bits which are recovered in the simulations presented in [1], especially the most
significant bits of each key byte, are deduced from the analysis of cache misses. These cache misses
are mainly due to the system calls and to some array manipulations which are performed before
each encryption. Therefore, contrary to what was originally believed, the performance reported
in [1] can only be achieved if the cache initial state is empty. When the cache is initially loaded with
the lookup tables, most of these cache misses do not occur anymore. However, we present a variant
of Bernstein’s attack which applies in this case and which enables to recover some information
on the other key bits. This information comes from specific features of the micro-architectures of
some processors.

RR n° 5881

4 Canteaut, Lauradouz €9 Seznec

This paper is organized as follows. We first describe the behaviour of the cache memory and
we show how it affects memory accesses. Section 3 investigates all previous work related to cache
attacks including both timing attacks and simple power analyses. We propose a classification of
cache attacks according to the cache effects they exploit. Among all those attacks, remote timing
attacks are particularly important for cryptographic products and we discuss the possibility to
mount such an attack against secret key algorithms. Then, Section 4 briefly recalls how AES
is usually implemented by lookup tables. Section 5 investigates the influence of the cache initial
state and of the micro-architecture on the cache timing attack described by Bernstein. A variant of
Bernstein’s AES timing attack is then presented in Section 6, which relies on a different assumption
on the cache initial state. In view of the obtained results on the effectiveness of the attack, we
conclude that it depends on the whole micro-architecture of the processor. We finally show that
some classical countermeasures enable to thwart those cache timing attacks.

2 Basics on cache memory

Since the gap between the latency of memory and the speed of processors is still increasing [9],
the bus bandwidth and the access speed to the main memory have become the limiting factors
in the overall processor throughput. This bottleneck is overcome by cache memory. A cache is a
small piece of high speed memory. It aims at keeping the CPU as busy as possible by minimizing
the load/store latency to the main memory. Modern processors have two levels of on-chip cache,
respectively called L1 and L2. Each of them may be dedicated to a special purpose (data or
instructions), but in the so-called Harward architecture the L1 cache is usually split into an
instruction cache and a data cache. The L2 cache can hold both instructions and data; it is larger
but slower than the L1 cache.

A cache is divided into blocks (or lines) of fixed size; typical block sizes are 32, 64, 128
bytes. It is worth noticing that the the L1 and L2 caches may have different block sizes. The
cache associativity determines how the main memory blocks map into cache blocks: an m-way
associative cache is divided into sets of m blocks. A main memory block can then be mapped to
any block of a given set. The block selection within a set is performed by a replacement algorithm
like LRU [9]. For instance, Figure 1 describes a 4-way associative cache.

[o7 | I
[T 20 [
‘ ‘/ ‘ } T }‘ T } T
Block 0 | Address Tag 0 Word[0-3]
| | |
T T T
Block 1 | Address Tag 1 Word[0-3]
| | |
T T T
Block 2 | Address Tag 2 Word[0-3]
| | |
T T T
Block3 | Address Tag 3 Word[0-3]
| | |
T

Figure 1: 4-way associative cache memory

An incoming address to the cache is split into three parts (Figure 2): a set number, an address
tag and a block offset. To determine whether the accessed data is stored in the cache, its address
tag is compared with the address tag of each block in the set. In the following, we consider an
m~way associative cache of s, bytes, divided into blocks, each of s, bytes. In this case, the size of
the block offset is [log,(ss)] bits and the size of the set number is [log,(=2=—)].

SpXm

The cache parameters affect the execution time of an algorithm that uses a data array of size
S composed of elements of size s, as follows. The array is mapped into the cache according to
its alignment and to the size s, of its elements. The alignment of a data can be considered as a
constraint on its address: on most architectures the address of a data is a multiple of the size of
the addressed data. The array is divided into [S/sy] blocks and each block can hold at most [2]
elements. Then, when an element of the array is accessed, the relative addressing can be seen as

INRIA

Understanding cache attacks 5

Address Tag Set Offset
O0x00FOFA 0x01 0x10

OXBCFSFL [- |
OXOOFOFA

| | |
OX74A051

O0x48BCFF

Setl
Figure 2: Addressing in a cache memory

a block selection and an offset into the block. The block offset requires [log,(2:)] bits and the

block selection [log,(%)]—bits.

Many other memory parameters can affect the behaviour of the execution such as cache write
policies, TLB.... Moreover modern processors feature very complex interactions between instruc-
tions. The microscopic execution time of any sequence of instructions also depends on these
interactions. Further details on memory hierarchy can be found in [9, 10].

3 Different types of cache attacks and their applicability

When an element in a data array is accessed, two situations may occur. If this element lies in
the cache memory, the access is called a hit; otherwise the block has to be loaded from the main
memory, this situation is referred as a miss. The power consumption and timing of a device may
highly vary depending on the memory level (L1 cache, L2 cache, main memory) where the memory
accesses are performed. This means that when timing a sequence of memory accesses, the number
of access hits can be successfully detected.

During the execution, we can distinguish three families of cache misses according to [10]:

e cold start misses, which arise for the first reference to a data;
e capacity misses, which occur if the size of the data array exceeds the size of the cache;

e conflict misses, which may happen only if accesses can provoke the eviction of recently
accessed data.

In the rest of the paper, we will only consider cold start or conflict misses. This choice is
motivated by the fact that symmetric encryption algorithms are designed to achieve a relative
high speed. Therefore, all operations must be implemented by lookup tables whose total size do
not exceed the cache capacity.

Under the previous assumption, the behaviour of the cache memory during an encryption (or
decryption) depends both on the cache initial state and on the sequence of memory accesses which
are performed. The assumptions made by the attacker on the cache initial state may highly vary
according to the targeted cryptographic device. Since they strongly condition the practicability
of the attack, we choose to classify cache attacks according to the corresponding requirements on
the initial state of the cache:

o Empty initial state (reset attacks): these attacks require that no table involved in the en-
cryption algorithm be contained in the cache before any observation. This class of attacks
is mainly based on the observation of cold start misses.

RR n° 5881

6 Canteaut, Lauradouz €9 Seznec

e Forged initial state (initialization attacks): in these attacks the adversary must be able to
trigger the cache into a known state before the encryption. This means that the attacker
will generate a chosen number of cold start misses.

e Loaded initial state (micro-architecture attacks): the cache already holds all the tables in-
volved in the encryption algorithm.

How there three hypothesis realistically apply to different types of cryptographic devices will
be discussed in the next sections.

For a given initial state, the sequence of memory accesses performed during the encryption
can be observed by timing analysis or by power analysis as suggested in [11]. The power analysis
allows the attacker to observe the encryption access by access whereas a timing attack gives a
global measure of the events that occur during the encryption. As a result, a power analysis of
the cache memory will obviously give more information than timing.

Another class of attacks has been proposed by Osvik et al. in [17]. Here, the attacker is able
to directly observe the content of the cache with a software probe. In practice, this information
is mainly obtained by using interactions between two data tables that share the same cache: the
first array C will be the lookup table involved in the encryption algorithm; the second array D
is controlled by the attacker. During the encryption the attacker performs a sequence of accesses
to D. These accesses may suffer from conflict misses due to table C. Therefore, by performing
chosen accesses to D, the attacker is able to generate some conflict misses which are related to the
secret key. This kind of attacks can only be mounted on multi-threaded processors [26] such as the
Pentium 4 HT. To carry such an attack the attacker must be able to read and trigger the cache
either both before and after the encryption or during the encryption. In this sense, the practical
applicability of these attacks is similar to the one of forged state attacks.

3.1 Attacks starting from empty cache

The complexity of resetting a cache memory (i.e., of a cache flush) depends on the target device.
By nature, cache memory is volatile. As a consequence, simply removing the voltage supply of the
device will clear the cache. This is only affordable on embedded systems, for instance on the most
recent types of smart card processors [7, 19] or on Digital Signal Processors. On more complex
systems like computers, the attacker needs a user account on the targeted host. Actually, the
cache is reset by triggering all cache blocks with many memory accesses before any observation.

In this particular context, a cache miss occurs when the accessed element does not belong to
a block which already lies in the cache. Since a cache block consists of a set of elements with the
same [log,(£2)] most significant bits, a cache hit corresponds to a collision on the [log,($¢)] most
significant bits of the inputs of the table. In this sense, an attack starting from an empty cache
can be seen as a partial collision attack [21, 20] on the addressing function of a cache memory.
For instance, on Pentium 3, the size of L1 data cache block is s, = 32; thus, L1 cache misses for
the AES lookup tables involve the 5 most significant bits of each key byte.

The first practical implementations of such attacks have been described against MISTY1 and
DES by Page [18] and Tsunoo et al. [25]. In [25] Tsunoo et al. point out that a pair of plain-
text/ciphertext which leads to a high miss ratio (i.e., to a long encryption time) provides an
improbable value for the difference between some bits of the first and the last round keys. After
several observations the correct partial difference can then be deduced from the least frequent
value. This work also illustrates the impact of data mapping into the cache. DES Sboxes have
64 inputs of 1 byte, but better performance can be achieved when each entry is aligned on 4-byte
boundaries. Unfortunately, this decreases the number of Sbox inputs per cache block, and it con-
siderably affects the cryptanalysis as pointed out by [24]. This attack also successfully applies to
MISTY1 and to the AES.

Another reset cache attack dedicated to embedded devices has been recently proposed by
Lauradoux in [14]. It uses power analysis to recover linear relations on the most significant
bits of all bytes of the AES secret key. The attack was demonstrated against different AES

INRIA

Understanding cache attacks 7

implementations and is similar to the timing attack of [24]. It exploits the fact that the first
inputs of the Sbox lookup tables in AES are given by the xor between the plaintext and the secret
key.

3.2 Attacks starting from initialized cache

In this class of attacks, the adversary must be able to initialize some chosen cache blocks with data
from the lookup tables. This can be done by flushing the cache memory and then by performing
fake encryptions with a known key in order to load certain table blocks into the cache. This
requirement limits the scope of the attack to multi-users systems since an access to the cache
memory is needed. With several chosen initializations and some power traces, Bertoni et al. [2]
show how to recover the most significant bits of each key byte in AES.

This class of attacks is similar to the attacks that start from an empty cache in the sense that
are based on the analysis of cache misses. The only difference is that they use conflict misses
instead of cold start misses to gain some information on the most significant bits of the key bytes.

3.3 Attacks starting from loaded cache

Both previous classes of attacks can be thwarted by systematically loading the whole table before
any encryption, as proposed in [2, 14]. This simple countermeasure avoids most cache misses.
However, this does not imply that all timing variations have been removed, as pointed out by
Bernstein [1]. For instance, Figure 3 shows that timing variations still exist for the original
implementation of AES by Bosselaers, Rijmen and Barreto [3], on a Pentium 3 with a loaded
cache initial state.

3000

2500

2000

1500

Plaintext number

1000

500

500 650 700 750 800 850
Execution time (cycles)

Figure 3: Distribution of timing for the original AES implementation on a Pentium 3 for 220
plaintexts (the peak of the distribution is here truncated but almost reaches 2'°)

These timing variations may be due to the fact that the cache memory on superscalar processors
is designed for handling more that one access per cycle. Among all solutions which implement
this feature [27, 23], the one used in X86 processors consists in splitting the cache into several
independently addressed banks. Therefore, memory accesses can suffer from conflict penalties
when several simultaneous concurrent references to the same bank occur. Such penalties affect
and are affected by the whole micro-architecture of the processor (i.e., by pipeline, conflict banks
detection logic, load/store queue. ..).

RR n° 5881

8 Canteaut, Lauradouz €9 Seznec

In some cases, the observed timing variations may also be due to the existence of some conflict
misses: even if the total size of the lookup tables does not exceed the size of the L1 cache, some
elements in the tables may be evicted from the cache during the execution if they lie in the
particular set chosen by the replacement algorithm. Such conflict misses may potentially appear
as soon as the total size of the tables exceeds the set size, but they usually occur with a non-
negligible probability from half of the cache size, as we will see in Section 5. The existence of such
conflict misses then depends on the size of the cache, but also on the cache associativity and on
the replacement algorithm.

3.4 Remote timing attacks

An interesting extension of timing attacks is the class of remote timing attacks. Since timing
attacks apply to weak implementations of a cryptographic algorithm, it is possible to transpose
them to remote devices. The assumptions requested to mount a remote timing attack are com-
pletely different depending on whether we consider public or secret-key algorithms. In the case
of public-key cryptography, assumptions are really weak. The attacking machine (Eve) sends a
request to the targeted server (Alice) using Alice’s public key (Figure 4). Then, by measuring
the time to respond (TTR), Eve tries to deduce Alice’s private key. This attack has been first
explored by Brumley and Boneh against RSA [5].

|
|
|
1
|
Alice ' Network =—>| Eve
|
|

TTR

Figure 4: Remote attack against public key algorithms

On the contrary, secret-key algorithms cannot be attacked in such a way. Indeed, there is
no particular reason to hope that some data encrypted with the secret key K4g are voluntarily
sent by Alice to Eve since Eve does not know the secret key K4p. Therefore, such ciphertexts
are available to the attacker only if they are eavesdropped in the context of a man-in-the-middle
attack (Figure 5). For instance, Eve can probe a routing element of a communication channel
between Alice and Bob. She will monitor the traffic on this communication channel to measure
the response time of both parties.

Figure 5: Remote attack against secret key algorithms

The most difficult task in all remote timing attacks is to evaluate the encryption time of the
target: the attacker has to take into account the transmission time from the target to the attacking
machine, but the noise added by the transmission delay to the encryption time is considerable.
That is why in practice the only known remote timing attack [5] was mounted on a local network.
The attack presented by Bernstein [1] bypasses this problem since it applies to a protocol in which

INRIA

Understanding cache attacks 9

the server’s timestamp is also transmitted and available to the attacker. This feature then allows
the attacker to directly access the encryption time without the noise added by the transmission
through the network. This considerably weakens the security model of the target.

If we want to mount a remote cache timing attack, another important difficulty is to control
the state of the cache before each encryption. A remote initialization or reset of the cache is not
realistic. As a consequence, the only practical assumption in the context of remote attack is that
the cache was loaded.

3.5 Previously proposed cache attacks against the AES

The previous discussion points out that the applicability of the different families of cache attacks
highly depends on the type of the targeted device. For embedded devices (e.g. for Digital Signal
Processors, micro-controllers...), the most natural situation is an attack starting from an empty
cache. For this type of targets, power analysis is obviously preferred to timing analysis since it
enables to observe the memory access sequence step by step. For non-embedded devices (e.g. for
PCs), the situation is very different. Initialization attacks are obviously much more powerful but
the corresponding field of applications is limited to multi-user systems. For single user-systems or
in the context of remote timing attacks, the only realistic hypothesis is a loaded initial state.

The typical cache attacks depending on the type of the targeted device are summarized in
Table 1.

| Type of devices || Class | Cache state |
embedded device power reset
multi-user system || memory | initialization
single user timing loaded

Table 1: Typical cache attacks depending on the targeted device

All previously proposed cache attacks against the AES (with a 128-bit secret key) are compared
in Table 2, both in terms of efficiency and applicability. The last column in the table gives the
number of information bits on the secret key recovered in the attack, as stated by the authors.
Note that the assumptions on the cache initial state are not always clearly stated; our classification
is derived from a careful analysis of the involved attacks. For instance, the attack described in [1]
is supposed to work for any cache initial state (clear cache, loaded cache...). However, a careful
examination of the program and some simulations show that its performance highly depends on
the cache initial state. This influence will be discussed in Section 5.

In all these attacks, the time complexity roughly corresponds to the encryption cost of all
required plaintexts, except for Bernstein’s attack which performs a precomputational step with a
similar time complexity.

| Attack || Nature | Cache state | Complexity | Key bits |
M || Timing 7 277 o1
[14] Power Empty 15 x 2115001 (~29) | 15 x [log,(£)] (75)
[24] Timing Empty 218 16 x [log,(2)1 (80)
[2] Power Forged oley] 4 oflosa()] (~2%%) | 16 x [log,(£)] (80)
[17] Memory Forged 211 128

Table 2: Comparison between known cache attacks against the AES (the size of each lookup table
is S = 1024 and the results in brackets corresponds to s, = 32, i.e., the block size of the L1 cache
on a Pentium 3)

RR n° 5881

10 Canteaut, Lauradouz €9 Seznec

Initialization attacks (i.e., attacks from a forged cache state) are obviously more efficient than
the other ones as shown in Table 2, but the corresponding field of applications is much more
restrictive.

4 TImplementation of the AES with lookup tables

The AES operates on 128-bit blocks which can be represented by a 4 x 4 matrix over Fys:

Aoo Aop Aoz Aogs
Ao Ain A A
Asg Arq Asp Ao
Aso Azq Ass Az

The AES has been designed to be implemented on many different platforms [6]. The round
function of the AES is composed of 4 basic transformations: SubBytes, ShiftRows, MixColumns,
AddRoundKey that work at the byte level on the internal state. While ShiftRows and AddRound-
Key are native operations even on 8-bit processors, SubBytes and MixColumns are difficult to
implement. SubBytes operates on each byte of the internal state as a composition of transforma-
tions: the multiplicative inversion in Fys and the affine transform over F, defined by:

Yo 1111100 0\ [z 0
i 0111110 0]|[n 1
” 0011111 0| 1
w| oo o011 11 1|2 0
vl =]t 000111 1||z]|T|o
Y5 110001 1 1|/ 0
ve 1110001 1|/ 1
ur 1111000 1) \yp 1

MixColumns considers each column as a polynomial over Fas. This transformation corresponds
to a multiplication by a fixed polynomial: ¢(x) = 03 z° + 01 22 + 01 z + 02

bo,; 02 03 01 01\ [ag,
bis| (01 02 03 01] (@
boi |~ [01 01 02 03] |ams
bs,; 03 01 01 02/ \as;

On 32-bit processors, lookup tables can be used to perform both operations. We can have one
table of 256 words for each column of MixColumns, i.e., four tables, each of 1 KByte for the whole
encryption. These tables correspond to the following relations:

CNE
Tola] =1 o] | Tld=] g1 | Bl=| sgJeo3 | T1=1 sig]e02
Sla] » 03 Slal Sla] Sla] 03

wher e denotes the multiplication in Fss.
Now, the j-th column of the state matrix after one AES round can be expressed as:

out; = To[ing, ;] © Ti[iny ;o] @ Taling,; c,] © Tsling ; ;] © RK;

where the constants Cy,, depend on the ShiftRows transformation and RK; is the corresponding
part of the round key. An additional table of 256 words is required for the last AES round, since
this last round does not involve the MixColumns operation, but only the substitution layer.

Another important point is that the first AES round depends on the xor between the secret
key and the plaintext. With the previously described lookup tables, the first round of the AES
can therefore be written as:

INRIA

Understanding cache attacks 11

yo = To[Poo @ Kool ®Ti[Pr11 @ K1,1] ®To[Po2 ® Ko ®T3[P33® K3 ® RKy
yi = To[Pog @ Koa)|®Ti[Pi2® K12 ®To[Po3 ® Ko 3] ®T5[P30® K30 ® RKy
ey2 = To[Po2 ® Koo ®Ti[Pi3® K13 ® To[Pog ® Kool ® T5[Ps1 @ K31] ® RK,
ys = To[Pos® Kos)®Ti[Pio® Ki,0] ®To[Po,1 ® Ko1] ®T3[P32® K32 ® RK3

where P; ; are the plaintext bytes and Kj; ; are the key bytes.

5 Analysis of the AES execution on different architectures

A Dbetter understanding of the attack reported by Bernstein requires a very precise analysis of
all parameters related to an AES execution. On modern processors, such an analysis can be
performed with software techniques based on the performance counters. Table 3 gives the number
of events that can be measured and the number of available counters (i.e., the number of events
which can be measured simultaneously) for different platforms. In all following simulations, the
values of these performance counters have be obtained from the perfctr device by the 3.2.1 PAPI
library [4].

Number of | Number of
Processor counters events
PENTIUM 3 2 80
PENTIUM 4 18 48
ITANIUM 4 90
PowerPc 7450 6 200
PowgrPc 750 4 40

Table 3: Characteristics of the performance counters for several architectures

All simulations have been performed with LINUX (2.6.11 and 2.4.22 kernels). The compiler is
gce 3.4.3. The AES implementation we used is the 0.9.5 - 0.9.8 OPENSSL implementation [16].
We also performed some simulations with the INTEL IPP 5.0 implementation, which led to very
similar results. Both implementations use five lookup tables, each of 1 KByte. For instance, we
are able to quantify the AES execution starting from a loaded cache initial state on a Pentium 3
by the quantities given in Table 4.

Instructions | Cycles | Stall | Interrupt | L1 data | L1 data | L2 data
Completed accessed | misses misses

[854 | 525 | 45 | 0 | 495 | 20 [0 |

L1 instruction | L1 instruction | L2 instruction
accesses misses misses

| 450 | 54 | 0 |

Table 4: AES encryption on a Pentium 3 (6/8/6-10-3) from a loaded cache initial state (average
over 215 encryptions)

5.1 Influence of the cache initial state

The attack described in [1] is mounted in a very particular context which influences its performance.
The main property is that many system calls are performed before each AES encryption because

RR n° 5881

12 Canteaut, Lauradouz €9 Seznec

the simulations have been performed in the context of a request to a server. These system calls
are of major importance since they highly influence the cache state. For instance, it is known that
an interruption causes in average the replacement of 150 32-byte cache blocks in the L1 cache on
a Pentium 3 processor running under Linux [22].

Moreover, Bernstein’s attack performs some array manipulations before encrypting each block:

for (i = 0;i < 40;++i) out[i] = 0;

*(unsigned int *) (out + 32) = timestamp();

if (len < 16) return;

for (1 = 0;i < 16;++1i) out[i] = in[i];

for (i = 16;i < len;++i) workareal[i] = in[i];
AES_encrypt (in,workarea,&expanded) ;

for (i = 0;i < 16;++i) out[16 + i] = scrambledzero[i];
*x(unsigned int *) (out + 36) = timestamp();

A consequence of these array manipulations is that some elements of the AES lookup tables are
evicted from the L1 data cache. This can be checked on Table 5 which compares the number of
average L1 data misses during an AES execution on a Pentium 4 when these manipulations are
performed as in [1] (for 1len=800), and when they are replaced by memcpy instructions. It is worth
noticing that, in both cases, some of these cache misses are caused by the PAPI software probe.

| || Instructions Completed | Cycles | L1 Data Misses | L2 Misses |

memcpy 824 510 65 0
1en=800 820 534 83 0

Table 5: Average numbers of data L1 misses when the array manipulations in [1] are replaced by
some memcpy instructions (over 2!® encryptions)

Therefore, it appears that the existence of systems calls and of some array manipulations in
the simulations described by [1] causes the eviction from the L1 cache of many elements of the
AES lookup tables before each encryption. Thus, most elements of the tables actually lie outside
of the L1 cache at the beginning of each encryption. Therefore, the attack described in [1] can
more or less be seen as an attack starting from an empty cache, i.e., as a reset attack, close to
the attack described in [25]. This is confirmed by the simulation results given in [1, Page 10].
Indeed, we can observe that 78 key bits are recovered after 22> AES encryptions on a Pentium 3.
But, most of these key bits correspond to the 5 most significant bits of the key bytes, i.e., to the
bits involved in cold start misses. Therefore, it seems that most of the recovered key bits in these
simulations come from cold start misses.

5.2 Influence of the cache parameters

The cache parameters also influence the encryption timing. For instance, Table 6 compares the
average number of cache misses during one AES encryption for a Pentium 3 and a Pentium 4. The
main difference between those processors is that Pentium 3 has a 16 KByte L1 data cache and a
16 KByte L1 instruction cache, while Pentium 4 has an 8 KByte L1 data cache and a trace cache
equivalent to an L1 instruction cache of 16-18 KBytes.

It clearly appears that the reduced size of the L1 cache in Pentium 4 highly increases the
number of cache misses. This is due to the fact that the 5 KBytes required by the lookup tables
are quite important with respect to the Pentium 4 L1 data cache size. Random accesses to these
tables then create some conflict misses as explained in Section 3.3. These conflict misses do not
appear anymore on the Pentium 3 since the L1 data cache is twice larger. Therefore, many cache
misses can be observed during the execution of the AES on a Pentium 4 in the conditions described
by Bernstein (i.e., from an almost empty cache). But, some of these cache misses are cold start
misses (due to the empty cache initial state) and the other ones are conflict misses (due to the

INRIA

Understanding cache attacks 13

Instructions | Cycles | Stall | L1 data | L1 data | L2 data

Completed accessed | misses misses
Pentium 3 854 525 45 495 20 0
Pentium 4 824 510 12 495 65 0

Table 6: Comparison of the average numbers of cache misses between Pentium 3 and Pentium 4
(over 215 encryptions), where each encryption is preceded by some memcpy instructions

small size of the cache). The impossibility to distinguish between both kinds of cache misses
with timing information considerably reduces the performance of the attack. For this reason, the
performance of the cache timing attack reported by Bernstein for a Pentium 3 cannot be achieved
for a Pentium 4, as explained in [15].

6 A cache timing attack on AES starting from loaded cache

Since the existence of two different types of cache misses makes Bernstein’s attack much less
efficient on a Pentium 4, it clearly appears that mounting an attack in this context requires a
better separation of both phenomena. This can be achieved by the following attack which avoids
cold start misses since it starts from a loaded cache initial state.

This attack can be seen as a variant of Bernstein’s attack in the sense that it exploits some
irregularities in the timing distributions, which are typical of the micro-architecture of the targeted
platform. The major difference with [1] is that our attack is a loaded initial state attack, i.e., the
only assumption on the cache initial state is that all lookup tables lie in the cache before encryption.
This situation is achieved by removing all system calls and array manipulations performed in [1].

6.1 Description of the timing attack

A timing attack can be mounted when the attacker is able to find a correlation between a certain
property P on the secret key and the encryption time. In the context of cache timing attacks, the
choice of Property P is related to the cache parameters. For instance, Tsunoo et al. in [25] consider
that a long DES encryption/decryption time (i.e., a sequence of cache misses) corresponds to the
fact that K; @ K16 # E(Ro) ® E(R15) on some bit positions which are determined by the size
of the cache blocks and the size of the used lookup tables. A similar attack on AES enables to
recover the most significant bits of each key byte. For instance, for 32-byte cache blocks (e.g. on
a Pentium 3), it recovers the 5 most significant bits of each byte.

For loaded cache attacks, cache misses do not occur anymore. Then, we need to find some
relations between the initial state of the AES and the processor micro-architecture. Unfortunately,
the whole micro-architecture of a processor is a complex system which is difficult to model. More-
over, most micro-architecture details are not documented (e.g. the structure of cache banks in
the cache). Taking this fact into account, the property P that we will exploit in the attack must
be identified by a precomputational step which must be performed on the same architecture as
the targeted processor, as it was proposed by Bernstein. This precomputational step consists in
encrypting a huge number of known plaintexts with a known key, and in characterizing the AES
initial states (i.e., the XOR between the plaintext and the key) which lead to the highest encryp-
tion timings. Then, the attack consists in measuring the execution timings of different known
plaintexts under the secret key and in comparing these observations and the properties learned
from the precomputational step. This comparison enables to guess some key bits by comparing
both results.

In the following, A; = K; @ P; denotes the i-th byte of the AES initial state. In Bernstein’s
attack, the precomputational step consists in determining the parameters (average and standard
deviation) of the distributions of the encryption time for each value of the byte A;. It is ob-
served that these timing distributions may present important variations when the value of A;

RR n° 5881

14 Canteaut, Lauradouz €9 Seznec

changes. Using this precomputation, the attack presented in [1] consists in computing the same
parameters when some known plaintexts are encrypted with the unknown secret key. Then, the
cross-correlation between both distributions may allow to recover some key bits.

In our attack, we need to modify the statistical test used in [1] since the lack of cache misses
modifies the shapes of the timing distributions. Here, the precomputational step investigates
the correlation between the encryption time and the values of all fixed sets of the bits of 4; =
(@ig,---,a:7). For all (a;;)jcs with J C {0,...,7}, we estimate the average encryption time for
all 27 possible values of (aij)jes- Then, we deduce that, in some cases, high encryption timings
always correspond to a certain value of each a;, £ € {0,...,7}, which is determined as follows.

¢ = 0 where c is a counter which is used for determining the expected value of a; .
For all J C {0,...,7} with £ € J

Among all the 2/’I possible values for (a; ;);cs, determine the one for which the average
encryption time is maximal.

If a; 0 = 1 for this value of (a;;);jes, then increment c.
otherwise, decrement c.

If |¢| > Threshold, then the expected value of a; ¢ is given by sign(c) = (—1)%~.
otherwise, a; ¢ will be undetermined.

The next part of the attack, known as the non-elimination method, is described in [24]. We
determine the plaintext bits which provide the highest encryption time by applying exactly the
same procedure as in the precomputational step. Then, we deduce that k; ¢, = a;¢ ® p;¢ for all
positions (i, £) which led to a prediction during the precomputational step.

Table 7 gives the number of bits for which a value of a;, was predicted during the precom-
putational step and the average error rate on the corresponding deduced key bits. For instance,
with the original implementation [3] on a Pentium 3 and 23° known plaintexts-ciphertexts, the
attack correctly guesses 66.75 key bits in average. The main difference between the OpenSSL
implementation and the original implementation by Bosselaers, Rijmen and Barreto is that the
second one suffers from unaligned memory accesses as pointed out in [28]. Note that we always
use the same number of encryptions both in the precomputational step and in the attack, and
that the timing information corresponds to the value of the cycle counter of the processor.

Our attack is clearly different from Bernstein’s attack since it does not involve the same key
bits. Indeed, in the attack against the original implementation runningon a Pentium 4 (15/2/7
processor) with 226 encryptions, we are able to predict 50 bits in the precomputational step.
Among them, 19 (resp. 31) belong the 4 most significant bits (resp. 4 least significant bits) of
the input bytes, whereas an attack based on cache misses only involve the 4 most significant bits
(Pentium 4 has 64-byte cache blocks).

Implementation Pre-computation | Number of predicted bits | Error rate
Original implementation [3] 230 75 bits 11%
OpenSSL [16] 230 20 bits 15 %

Table 7: Result of the attack on a Pentium 3 processor

6.2 Impact of micro-architecture on cache attacks

We apply the attack on several processors of the Pentium 4 family of processors. The micro-
architecture of the Pentium 4 family has evolved throught the years and we find under the name
Pentium 4 some processors with completely different micro-architectures. The results given in
Table 8 clearly exhibit the link between the whole micro-architecture and the efficiency of the
attack.

INRIA

Understanding cache attacks 15

CPU model Frequency | predicted Average Standard
(family /model/ . Error Rate e deviation
stepping) (Ghz) key bits AES timing AES timing

15/4/1 3.2 17 10 % 660 25
15/3/3 3 4 50 % 690 9
15/2/4 2.0 55 10 % 820 33
15/2]7 2.4 80 10 % 659 41
15/2/9 2.6 75 10 % 658 40
15/2/5 2.8 78 10 % 654 0

Table 8: Evaluation of the cache attack on Pentium 4 processors against the original implementa-
tion

Our observations are also confirmed by the variations of the attack performances when the
compiler options are changed (Table 9).

Compiler Processor Option predicted key bits | Error rate
gee 3.2.2 Pentium 3 - 95 10 %
gee 3.2.2 Pentium 3 -03 80 10%

-09 -mcpu=pentium3

-march=pentium3 45 15%

gee 3.2.2 Pentium 3

Table 9: Evaluation of cache attacks considering different compiler options against the original
implementation

7 Countermeasures

The previously described cache timing attacks against the AES can be thwarted by both following
classical countermeasures.

The first one compensates the encryption timing variation. This countermeasure can be de-
composed into four components:

e 3 cache warm-up routine which guarantees that the cache has been loaded with the tables
involved in the encryption process. This element is added to remove all cold start misses
and all evictions that occurs during an interruption.

e a timing probe which measures the current execution time of the AES implementation. This
is achieved using the timestamp (HardClock()) of the processor.

e a compensation loop which is designed to increase the encryption time until we reach the
worst case execution time (WCET). It executes several times a small piece of code with a
known latency.

e an interruption or abnormal event detection: if an interrupt occurs during the encryption,
some blocks of the lookup table can be evicted from the cache. This can affect the current
encryption but also the following encryption. If we consider that the noise added by the
interruption is too important to be exploited in an attack, we only need to reload the table
before the next encryption.

Since the execution is accurately measured, this countermeasure needs to be carefully designed
for each micro-architecture and operating system. This countermeasure can not defeat an adver-
sary which is able to generate conflict misses during the encryption like in [17]. From a performance

RR n° 5881

16 Canteaut, Lauradouz €9 Seznec

if abnormal = 1 then
Warmup()
abnormal = 0
else
begin = HardClock()
AES implementation. ..
end = HardClock()
if end-begin < WCET
Compensate()
if end-begin > THRESHOLD
abnormal = 1

Figure 6: Resistant AES implementation using compensation

point of view, the degradation is excessive since we always reach the WCET of the algorithm. As
shown in Figure 3, this represents an increase by almost 100% of the average encryption cost.

Another solution is to use masking to change the table mapping. But, the main drawback
of this technique is that we need to compute the permutation each time an access to a table is
performed. Thus, it introduces an important overhead. The same idea can nevertheless be carried
out without any important computational cost if the involved permutation is a translation. A
randomly chosen mask M = myg | my | ma | ms is applied to each word of the internal state of
the AES. Then, the masked output internal state e of the AES round function is obtained from a
non-masked input state a by:

ej = Tg[ao,j ®me] Ty [al’j_cl Dmy] ® Tz[az,j_@ ® msy] Tg[ag,j_c'3 ®ms3] @ RK; o M

In the previous equation, the address of each memory access is masked by a m;. The computations
of a; ; ® m; are included into the lookup table; this means that we apply a translation on the
mapping of the tables: T} [x; ;] = Ti[x;,; ® m;). The additional mask RK; ® M is considered as a
mask on the round key (except for the last one): RK; = RK; & M. This operation is performed
at the end of the key schedule procedure. Therefore, each AES round can be described by:

ej = Tglao,;] @ Tilar,j-c,] @ T3las,;—c,] ® Tslas j—c,] ® RK;

Then, this technique for masking the internal state of the AES allows to change the mapping
of the lookup tables without any additional cost. Unfortunately, we can not change the mask for
each encryption since the tables T} must be recomputed. This operation costs about 9000 cycles
on a Pentium 4. But, the mask can be changed after 256 encryptions for instance. With this
configuration the resulting overhead is only of 5 % compared to a non-masked AES implementation.
Our simulations show that this countermeasure is able to thwart the previously described attack.
We also believe that cache timing attacks based on cache misses, such as the one presented in [17],
can also be defeated by this kind of masking,.

8 Conclusions

Our study clarifies the applicability of cache attacks in the sense that it emphasizes the impacts
of the cache initial state, of the whole micro-architecture of the processor, of the compiler, of
the operating system... on the number of key bits which are recovered by analysing the cache
behaviour. For these reasons, their performances may be hard to establish since experiments
cannot always be reproduced.

INRIA

Understanding cache attacks 17

References

[1] Daniel J. Bernstein. Cache-timing attacks on AES, 2005. http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf.

[2] Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and Gianluca Palermo.
AES power attack based on induced cache miss and countermeasure. In International Sympo-
sium on Information Technology: Coding and Computing - ITCC ’05, pages 586—-591. IEEE
Computer Society, 2005.

[3] Antoon Bosselaers, Vincent Rijmen, and Paulo Barreto. AES ANSI C reference code v3.0.
Available for instance at http://aeslib.gcu-squad.org/.

[4] Shirley Browne, Jack Dongarra, N. Garner, Kevin S. London, and Philip Mucci. A scalable
cross-platform infrastructure for application performance tuning using hardware counters. In
Proceedings of Supercomputing - SC 2000. IEEE, 2000. http://icl.cs.utk.edu/papi/.

[5] David Brumley and Dan Boneh. Remote timing attack are practical. In 12th USENIX
Security Symposium, pages 1-14, 2003.

[6] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced Encryption
Standard. Springer-Verlag, 2002.

[7] Jean-Francois Dhem and Nathalie Feyt. Hardware and software symbiosis helps smart card
evolution. IEEE Micro, 21(4):14-25, 2001.

[8] ECRYPT - European Network of Excellence in Cryptology. The side channel cryptanalysis
lounge. http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html, 2005.

[9] John Hennessy and David Patterson. Computer Architecture: a quantitative approach. Mor-
gan Kaufmann Publisher, Inc, 1996.

[10] Mark Hill. Aspect of cache memory and instruction buffer performance. PhD thesis, University
of California, Berkeley, 1987.

[11] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel cryptanalysis of
product ciphers. Journal of Computer Security, 8(2/3), 2000.

[12] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Advances in Cryptology - CRYPTO ’96, Lecture Notes in Computer Science 1109,
pages 104-113. Springer-Verlag, 1996.

[13] Francois Koeune and Jean-Jacques Quisquater. A timing attack against Rijndael. Technical
Report CG-1999/1, UCL Crypto Group, 1999.

[14] Cédric Lauradoux. Collision attacks on processors with cache and countermeasures. In
Western European WOrkshop on Research in Cryptography - WEWoRC 05, volume P-74 of
Lecture Notes in Informatics, pages 76-85. Bonner Kdllen Verlag, 2005.

[15] Mairéad O’Hanlon and Antony Tonge. Investigation of cache timing attacks on AES. www.
computing.dcu.ie/research/papers/2005/0105.pdf, 2005.

[16] The OpenSSL project. OpenSSL-0.9.7i. http://www.openssl.org/.

[17] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the
case of AES. In CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages
1-20. Springer, 2006.

[18] D. Page. Theoretical use of cache memory as a cryptanalytic side-channel. Technical Report
CSTR-02-003, Department of Computer Science, University of Bristol, June 2002.

RR n° 5881

18

Canteaut, Lauradouz €9 Seznec

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Philips. HiPerSmart - 32 bit high performance smart card Ics.

Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A collision-attack on AES
combining side channel- and differential-attack. In Workshop on Cryptographic Hardware
and Embedded Systems - CHES ’04, Lecture Note in Computer Science 3156, pages 163-175.
Springer Verlag, 2004.

Kai Schramm, Thomas J. Wollinger, and Christof Paar. A new class of collision attacks and
its application to DES. In Fast Software Encryption - FSE ’03, Lecture Note in Computer
Science 2887, pages 192-205. Springer Verlag, 2003.

A. Seznec and N. Sendrier. HAVEGE: a user-level software heuristic for generating empir-
ically strong random numbers. ACM Transactions on Modeling and Computer Simulation,
13(4):334-346, 2003.

Gurindar S. Sohi and Manoj Franklin. High-bandwidth data memory systems for superscalar
processors. In International Conference on Architectural Support for Programming Languages
and Operating Systems - ASPLOS ’91, pages 53—62. ACM Press, 1991.

Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi Miyauchi. Crypt-
analysis of DES implemented on computers with cache. In Workshop on Cryptographic Hard-
ware and Embedded Systems - CHES ’03, Lecture Note in Computer Science 2779, pages
62-76. Springer Verlag, 2003.

Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi Miyauchi. Crypt-
analysis of block ciphers implemented on computers with cache. In International Symposium
on Information Theory and Its Applications - ISITA ’02, pages 803—-806. IEEE Information
Theory Society, 2002.

Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading: Maxi-
mizing on-chip parallelism. In 22nd Annual International Symposium on Computer Architec-
ture - ISCA 05, pages 392-403. ACM Press, 1995.

Kenneth M. Wilson and Kunle Olukotun. High bandwidth on-chip cache design. IEEFE
Transaction Computers, 50(4):292-307, 2001.

Yamir Yunus. Optimizing performance of the AES algorithm. Technical report, Intel Cor-
poration, 2005. http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/pentium4/
knowledgebase/20250.htm.

INRIA

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

