
实验三 PID 控制技术的 MATLAB 实现

一． 实验目的

1． 熟悉并掌握 MATLAB 的工作环境。

2． 了解 PID 控制技术的基本理论。

3． 在 MATLAB 工作环境下，选择适当的例子，实现 PID 控制，讨论控

制效果。

二． 实验内容

This tutorial will show you the characteristics of the each of

proportional (P), the integral (I), and the derivative (D) controls, and

how to use them to obtain a desired response. In this tutorial, we will

consider the following unity feedback system:

Plant: A system to be controlled

Controller: Provides the excitation for the plant; Designed to

control the overall system behavior

The threeThe threeThe threeThe three----term controllerterm controllerterm controllerterm controller

The transfer function of the PID controller looks like the following:

• Kp = Proportional gain

• KI = Integral gain

• Kd = Derivative gain

First, let's take a look at how the PID controller works in a closed-loop

system using the schematic shown above. The variable (e) represents the

tracking error, the difference between the desired input value (R) and

the actual output (Y). This error signal (e) will be sent to the PID

controller, and the controller computes both the derivative and the

integral of this error signal. The signal (u) just past the controller

is now equal to the proportional gain (Kp) times the magnitude of the error

plus the integral gain (Ki) times the integral of the error plus the

derivative gain (Kd) times the derivative of the error.

This signal (u) will be sent to the plant, and the new output (Y) will

be obtained. This new output (Y) will be sent back to the sensor again

to find the new error signal (e). The controller takes this new error

signal and computes its derivative and its integral again. This process

goes on and on.

The characteristics of P, I, and D controllersThe characteristics of P, I, and D controllersThe characteristics of P, I, and D controllersThe characteristics of P, I, and D controllers

A proportional controller (Kp) will have the effect of reducing the rise

time and will reduce ,but never eliminate, the steady-state error. An

integral control (Ki) will have the effect of eliminating the steady-state

error, but it may make the transient response worse. A derivative control

(Kd) will have the effect of increasing the stability of the system,

reducing the overshoot, and improving the transient response. Effects of

each of controllers Kp, Kd, and Ki on a closed-loop system are summarized

in the table shown below.

CL RESPONSECL RESPONSECL RESPONSECL RESPONSE RISE TIMERISE TIMERISE TIMERISE TIME OVEROVEROVEROVERSHOOTSHOOTSHOOTSHOOT SETTLING TIMESETTLING TIMESETTLING TIMESETTLING TIME SSSS----S ERRORS ERRORS ERRORS ERROR

KpKpKpKp Decrease Increase Small Change Decrease

KiKiKiKi Decrease Increase Increase Eliminate

KdKdKdKd Small Change Decrease Decrease Small Change

Note that these correlations may not be exactly accurate, because Kp, Ki,

and Kd are dependent of each other. In fact, changing one of these

variables can change the effect of the other two. For this reason, the

table should only be used as a reference when you are determining the

values for Ki, Kp and Kd.

三． 实验步骤

选择如下示例，按步骤进行试验：

Example ProblemExample ProblemExample ProblemExample Problem

Suppose we have a simple mass, spring, and damper problem.

The modeling equation of this system is

(1)

Taking the Laplace transform of the modeling equation (1)

The transfer function between the displacement X(s) and the input F(s)

then becomes

Let

• M = 1kg

• b = 10 N.s/m

• k = 20 N/m

• F(s) = 1

Plug these values into the above transfer function

The goal of this problem is to show you how each of Kp, Ki and Kd contributes

to obtain

• Fast rise time

• Minimum overshoot

• No steady-state error

OpenOpenOpenOpen----loop step responseloop step responseloop step responseloop step response

Let's first view the open-loop step response. Create a new m-file and add

in the following code:

num=1;

den=[1 10 20];

step(num,den)

Running this m-file in the Matlab command window should give you the plot

shown below.

The DC gain of the plant transfer function is 1/20, so 0.05 is the final

value of the output to an unit step input. This corresponds to the

steady-state error of 0.95, quite large indeed. Furthermore, the rise time

is about one second, and the settling time is about 1.5 seconds. Let's

design a controller that will reduce the rise time, reduce the settling

time, and eliminates the steady-state error.

Proportional controlProportional controlProportional controlProportional control

From the table shown above, we see that the proportional controller (Kp)

reduces the rise time, increases the overshoot, and reduces the

steady-state error. The closed-loop transfer function of the above system

with a proportional controller is:

Let the proportional gain (Kp) equals 300 and change the m-file to the

following:

 Kp=300;

 num=[Kp];

 den=[1 10 20+Kp];

 t=0:0.01:2;

 step(num,den,t)

Running this m-file in the Matlab command window should gives you the

following plot.

Note: The Matlab function called cloop can be used to obtain a closed-loop
transfer function directly from the open-loop transfer function (instead

of obtaining closed-loop transfer function by hand). The following m-file

uses the cloop command that should give you the identical plot as the one

shown above.

num=1;

den=[1 10 20];

Kp=300;

[numCL,denCL]=cloop(Kp*num,den);

t=0:0.01:2;

step(numCL, denCL,t)

The above plot shows that the proportional controller reduced both the

rise time and the steady-state error, increased the overshoot, and

decreased the settling time by small amount.

ProportionalProportionalProportionalProportional----Derivative controlDerivative controlDerivative controlDerivative control

Now, let's take a look at a PD control. From the table shown above, we

see that the derivative controller (Kd) reduces both the overshoot and

the settling time. The closed-loop transfer function of the given system

with a PD controller is:

Let Kp equals to 300 as before and let Kd equals 10. Enter the following

commands into an m-file and run it in the Matlab command window.

Kp=300;

Kd=10;

num=[Kd Kp];

den=[1 10+Kd 20+Kp];

t=0:0.01:2;

step(num,den,t)

This plot shows that the derivative controller reduced both the overshoot

and the settling time, and had small effect on the rise time and the

steady-state error.

ProportionalProportionalProportionalProportional----Integral controlIntegral controlIntegral controlIntegral control

Before going into a PID control, let's take a look at a PI control. From

the table, we see that an integral controller (Ki) decreases the rise time,

increases both the overshoot and the settling time, and eliminates the

steady-state error. For the given system, the closed-loop transfer

function with a PI control is:

Let's reduce the Kp to 30, and let Ki equals to 70. Create an new m-file

and enter the following commands.

Kp=30;

Ki=70;

num=[Kp Ki];

den=[1 10 20+Kp Ki];

t=0:0.01:2;

step(num,den,t)

Run this m-file in the Matlab command window, and you should get the

following plot.

We have reduced the proportional gain (Kp) because the integral controller

also reduces the rise time and increases the overshoot as the proportional

controller does (double effect). The above response shows that the

integral controller eliminated the steady-state error.

ProportionalProportionalProportionalProportional----IntegralIntegralIntegralIntegral----Derivative controlDerivative controlDerivative controlDerivative control

Now, let's take a look at a PID controller. The closed-loop transfer

function of the given system with a PID controller is:

After several trial and error runs, the gains Kp=350, Ki=300, and Kd=50

provided the desired response. To confirm, enter the following commands

to an m-file and run it in the command window. You should get the following

step response.

Kp=350;

Ki=300;

Kd=50;

num=[Kd Kp Ki];

den=[1 10+Kd 20+Kp Ki];

t=0:0.01:2;

step(num,den,t)

Now, we have obtained the system with no overshoot, fast rise time, and

no steady-state error.

四．实验报告

1．综述 PID 控制的理论原理；

2．画出示例程序中 PID 控制结构图，并简述控制效果；

3．选择其它的示例实现 PID 控制。

