

单轴数控系统

用户手册

适用于WA-OTD

南京华兴数控技术有限公司

安全使用说明

为了使您能安全正确地使用本系统,在操作机床前请仔细阅读本说明书。

一般性警告及注意事项

1. 在使用新程序进行实际加工零件时,请勿直接进行加工,应在不装刀具和零件的情况下,利用单段程序段进给,进行试运转,验证机床机械运动的正确性。在程序未被确认正确的情况下进行加工,可能存在不可预料的机械运动,造成刀具、机床、工件损坏以及人员受伤。

2. 应在充分确认输入数据的正确性后再进行操作。若使用的数据不正确,可能存在不可预料的机械运动,造成刀具、机床、工件损坏以及人员受伤。

3. 确认设置的进给速度和主轴转速是否合适。每台机床都有其可承受的最高进给速度, 用户设置的进给速度值不能超过机床最高进给速度。另外,加工对象不同,最合适的进给速 度和主轴转速也不同,请按照机床说明书执行。若进给速度和主轴转速设置不合适,则可能 会造成刀具、机床、工件损坏及人员受伤。

4. 使用刀具补偿功能时,应充分确认补偿方向和补偿量。若使用的数据不正确,可能 存在所料未及的机械运动,造成刀具、机床、工件损坏及人员受伤。

5. 系统的参数应设定合适的值。需要调整参数值时,必须在充分理解参数意义的基础 上再进行修改。若参数设定错误,可能会造成刀具、机床、工件损坏及人员受伤。

6. 配置好的参数文件最好做一备份,以便日后恢复。

有关编程的警告说明

编程时要熟读并充分理解操作说明书的内容,有关安全的主要注意事项如下:

1. 坐标系设定

坐标系设定错误时,即使程序移动指令正确,也不能得到预想的动作,并且有可能造成 造成刀具、机床、工件损坏及人员受伤。

2. 非直线插补定位

非直线插补定位时(始点和终点间非直线移动的运动方式,比如 G02, G03)必须在正确 确认运动轨迹后再编程,否则有可能使刀具、机床、工件损坏及人员受伤。

3. 回转轴动作功能

在有回转轴动作的场合,根据工件安装方式、离心力大小,充分考虑回转轴的速度后再 编程。如果程序不合适,回转轴的速度过大,工件可能被甩下。有可能使刀具、机床、工件 损坏及人员受伤。

4. 端面恒线速控制

在恒线速控制中,应正确指定最高转速,当恒线速控制轴的工件半径接近于零时,主轴 速度变得非常高,若指令不合适,有可能使刀具、机床、工件损坏及人员受伤。

有关操作的警告说明

1. 手动操作

手动操作机床运动时,要掌握刀具及工件的位置,确认移动轴、移动方向以及进给速度 等方面的选择是否有误。若操作有误,有可能使刀具、机床、工件损坏及人员受伤。

2. 手动返回机床零点

对于需要手动返回机床零点的机床,电源接通后,必须进行手动返回机床零点,否则机 床会出现预想不到的动作,有可能使刀具、机床、工件损坏及人员受伤。

3. 手轮进给

使用手轮进给时,若选择100倍的倍率运转时,刀具、工作台等移动速度将变得较快,因此应特别注意。否则有可能使刀具、机床、工件损坏及人员受伤。

4. 倍率无效

在螺纹切削中,由于倍率调整可能造成螺纹切削误差,因此手动倍率调整无效。

Ж
-1-

安全使用说明	i
一般性警告及注意事项	i
有关编程的警告说明	i
有关操作的警告说明	ii
目录 i	ii
I 系统概述	9
1.1 主要规格	9
1.2 系统资源	9
1.3 系统主要功能简介	9
1.4 坐标系规定	9
1.4.1 相对于静止的工件而运动的原则	9
1.4.2 机床运动部件方向的规定	10
1.4.3 机床参考点	10
1.5 数控系统的操作键盘	10
1.5.1 手工操作机床时坐标进给及进给参数设置	10
1.5.2 软定义键 F1~F5	10
1.5.3 其它按键	11
1.6 开机	12
1.6.1 开机画面及设计	13
1.6.2 主功能选择	13
1.6.3 子功能选择	13
II 系统编程	15
2.1 程序段格式	15
2.1.1 宏变量	16
2.2 准备功能(G功能)	16
2.2.1 GOO——快速定位	17
2.2.2 GO1——直线插补	17
2.2.3 GO4——延时	17
2.2.4 G09——进给准停	17
2.2.5 G20——子程序调用	17
2.2.6 G22——子程序定义	18
2.2.7 G24——子程序结束返回	18
2.2.8 G25——跳转加工	18
2.2.9 G26——转移加工(程序内部子程序调用)	19
2.2.10 G27——无限循环	19
2.2.11 G30——放大缩小倍率取消	19
2.2.12 G31——放大或缩小倍率	20
2.2.13 G35——跳跃功能	20
2.2.14 G61——当前段与后续加工段连续清角	20

2.2.15 G62——当前段快速清角指令	20
2.2.16 G64——取消清角过渡	20
2.2.17 G74——返回参考点(机械原点)	21
2.2.18 G75——以机床坐标返回加工开始位置	21
2.2.19 G76——从当前位置返回加工起始点(进刀点)	21
2.2.20 G83——深孔加工循环	21
2.2.21 G84——公制刚性攻丝循环	22
2.2.22 G85——英制刚性攻丝循环	23
2.2.23 G90——绝对坐标编程编程	23
2.2.24 G91——增量坐标编程编程	23
2.2.25 G92——设定工件坐标系	23
2.2.26 G96——恒线速切削	24
2.2.27 G97——取消恒线速切削	24
2.2.28 G98——取消每转进给	24
2.2.29 G99——设定每转进给	24
2.3 辅助功能(M功能)	24
2.3.1 MOO——程序暂停	25
2.3.2 M01——条件暂停	25
2.3.3 M02——程序结束	25
2.3.4 MO3——主轴正转	25
2.3.5 M04——主轴反转	25
2.3.6 M05——主轴停止	26
2.3.7 M08——开冷却液	27
2.3.8 M09——关冷却液	27
2.3.9 M10/M11——主轴夹紧松开控制	27
2.3.10 M12/M13——主轴高速档继电器开/关	28
2.3.11 M20——开指定的继电器	28
2.3.12 M21——关指定的继电器	28
2.3.13 M24——人为指定刀补号	28
2.3.14 M25——等待换刀结束	28
2.3.15 M28/M29——主轴的速度/位置模式:	28
2.3.16 M41~M44——指定主轴转速档	28
2.3.17 M71~M85M功能脉冲输出	28
2.4 F、S、T 功能	28
2.4.1 F——进给功能	28
2.4.2 S——主轴转速控制	29
2.4.3 T——刀具功能	29
Ⅲ 系统操作	31
3.1 安全、保护与补偿	31
3.1.1 急停	31
3.1.2 硬限位	31
3.1.3 软限位	31
3.1.4 间隙补偿	32
3.1.5 丝杆螺距补偿	32

	3.2 PRGRM(程序)主功能	32
	3.2.1 程序名输入原则	33
	3.2.2 程序编辑	33
	3.2.3 复制文件	34
	3.2.4 删除文件	34
	3.2.5 修改程序属性	34
	3.2.6 输入和输出功能	35
	3.2.7 浏览	35
	3.3 U 盘管理	35
	3.3.1 U盘管理说明	36
	3.3.2 U 盘管理界面及界面介绍	36
	3.3.3 U 盘文件的选中	37
	3.3.4 打开 U 盘文件夹	37
	3.3.5 返回上级目录	37
	3.3.6 将 U 盘文件存入系统	37
	3.3.7 用户程序存储器中的程序存入 U 盘	37
	3.3.8 浏览U盘文件	38
	3.3.9 删除 U 盘文件	38
	3.3.10 浏览用户程序存储器中的程序文件	38
	3.3.11 U 盘管理界面下循环浏览用户程序列表	38
	3.4 OPERT 主功能	38
	3.4.1 自动操作	39
	3.4.2 手动操作机床	40
	3.4.3 返回机床零点	40
	3.4.4 手轮(手摇脉冲发生器)	40
	3.4.5 系统加工状态设置	40
	3.4.6 MDI 操作方式	41
	3.5 图形显示功能	41
	3.5.1 图形显示功能的画面进入顺序	41
	3.5.2 图形模拟步骤	42
IV	系统功能	43
	4.1 参数体系	43
	4.2 参数的基本概念	44
	4.2.1 加减速时间常数	44
	4.2.2 直线式升降速	44
	4.2.3 电子齿轮比	45
	4.2.4 参数密码	45
	4.3 系统参数	46
	4.4 位参数	46
	4.5 螺距误差补偿	46
	4.5.1 螺距误差补偿须注意的问题	46
	4.5.2 螺距误差补偿设置举例	47
	4.5.3 螺距误差补偿 U 盘导入	47
	4.6 刀具参数	48

	4.6.1 刀补操作	48
	4.6.2 坐标修调	48
	4.6.3 刀补值的直接输入	48
	4.7 初始化	48
	4.7.1 清内存	48
	4.7.2 格式化	49
	4.7.3 修改密码	49
	4.7.4 出厂值	49
	4.7.5 时间设置	51
	4.8 诊断	51
	4.8.1 输入口	51
	4.8.2 输出口	52
	4.8.3 报警定义	53
	4.8.4 报警列表	54
V	系统重要功能详述	55
	5.1 如何提高加工效率	55
	5.1.1 除非工艺需要工件的两段轨迹之间为尖角,否则尽量不要使用 G61,G62 指	Ŷ
		55
	5.1.2 并行执行 S、T 等指令	55
	5.1.3 手脉接法(系统支持标准的外接手脉(XJ3)接口)。	55
	5.2 加工中修改刀补值	55
	5.3 主轴控制	56
	5.3.1 主轴模拟量输出控制	56
	5.3.2 主轴的 M 功能控制	57
	5.3.3 主轴夹紧卡盘(液压卡盘)控制	57
	5.3.4 主轴启动状态检测功能	58
	5.4 外部功能控制	58
	5.4.1 三位开关	58
	5.4.2 系统对进给轴的控制	58
	5.4.3 伺服单元与系统应答逻辑	58
	5.4.4 系统对进给轴的脉冲输出方式:	59
	5.4.5 软限位	59
	5.4.6 机械零点开关设置	60
	5.4.7 换刀过程	60
	5.4.8 机床报警处理	61
	5.5 工件坐标系的产生和恢复	62
	5.5.1 工件坐标系的产生模式	62
	5.5.2 机床坐标及工件坐标的产生	62
	5.5.3 与坐标系有关的参数选项:	63
	5.5.4 加工开始位置设定	63
	5.5.5 刀补修调与刀具偏置	63
	5.7 系统软件升级	64
	5.7.1 系统软件升级	64
	5.7.2 用户开机界面更新	65

VI	数控系统连接	67
	6.1 系统组成	67
	6.1.1 数控系统控制单元框图	67
	6.1.2 一个典型的机床电器方案	67
	6.1.3 机械尺寸	68
	6.1.4 接口定义一览	68
	6.1.5 输出信号对照表	69
	6.1.6 输入信号对照表	70
	6.2 强电供电	71
	6.2.1 安装要求	71
	6.2.2 强电供电	71
	6.2.3 接地	72
	6.2.4 强电安装中注意事项	72
	6.3 数控系统内部连接	73
	6.3.1 输入、输出示意图	73
	6.4 数控系统信号接接口定义	73
	6.4.1 数控系统外部连接	73
	6.4.2 输入/输出接线	74
	6.5 电机接口 4J1、4J3	79
	6.6 外接启动急停暂停接口 XJ5	81
附表	录一 出错报警	83
附表	录二 系统参数	86
附表	录三 位参数	90

本书详细阐述了 WA-OTD 数控系统的编程、操作、连接定义等内容,为了使您能安全正确地使用本系统,在操作机床前请仔细阅读本说明书。

|系统概述

1.1 主要规格

脉冲当量:	X: 0.001mm
编程范围:	\pm 99999. 999mm
快进速度:	30000mm/min (0.001mm当量)
程序容量:	电子盘容量为2000K,可存储200个用户程序,10个参数文件
插 补:	直线,圆弧,公、英制、直/锥、多头/单头螺纹,公、英制 政效

1.2 系统资源

显	示:	7 寸彩色液晶屏,分辨率为 800×480
电子盘: 2M 存储器,最多可存 200 26路开关量,光电隔离,其		2M 存储器, 最多可存 200 个加工程序及参数文件
		26路开关量,光电隔离,其中机床零信号为中断方式接入,快
输入(言号 :	速响应
		手轮接口1路,×1, ×10, ×100倍率
编码器接口: 1路, 四倍频处理		1路,四倍频处理
		16路开关量,继电器功率驱动(0C门)输出;
输出信号: X方向电机驱动信号(CP、CW)脉冲输出;		X方向电机驱动信号(CP、CW)脉冲输出;
		1路10位模拟量输出,输出范围: 0~10V
通	信:	RS232C,异步串行口,单 USB 接口
时	间:	加工计时

1.3 系统主要功能简介

OPERT (加工):	机床操作,所有与机床有关的运动,强电信号控制
PARAM (参数):	参数设置,用于设置各种与机床或数控系统有关的参数
U 盘管理 (U盘):	实现U盘内容和用户程序存储器间的导入和导出
PRGRM (程序):	管理用户所编加工程序,程序输入、输出操作

1.4 坐标系规定

在数控机床上加工零件时,刀具与零件的相对运动,必须在确定的坐标系中才能按规定的程序进行加工。为了便于编程时描述机床的运动,简化程序的编制方法,保证记录数据的 互换性,数控机床的坐标和运动方向均已标准化。

1.4.1 相对于静止的工件而运动的原则

这一原则是为了编程人员能够在不知道是刀具移动,还是工件移动的情况下零件图纸,确定机床的加工过程。

1.4.2 机床运动部件方向的规定

机床的某一运动部件的运动正方向,是增大刀具和工件距离的方向。

1.4.3 机床参考点

机床参考点也称机械零点,它是指 X 方向沿正向移动到接近极限位置,感应到该方向参考点开关时所决定的位置。一台机床是否有回参考点功能,取决于机床制造商是否安装了参考点开关(也称机械原点开关)。

1.5 数控系统的操作键盘

数控系统提供的全部操作功能可由键盘操作实现。 系统的操作面板如图 1.1 所示:

\odot	\bigcirc
华兴数控 WASHING WA-0TD	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
\odot	Ô

图 1.1 系统面板外形图

1.5.1 手工操作机床时坐标进给及进给参数设置

X-▲、X+▼分别表示沿 X 负向、X 正向手动进给。在非加工主功能下为调光键,用于调 节液晶屏的显示亮度。

User 用于手动进给时进入步进量 U。

Xsav 在测定刀具补偿值时,记忆 X 向的坐标值。

1.5.2 **软定义键** F1~F5

在液晶屏下方有五个键标有 F1~F5,在手册中分别用【F1】~【F5】该键所代表的功

能随当前用户选择的主功能不同而变化,主要用于在主功能下选择属于该主功能的子功能, F键的含义跟当前屏幕下方的汉字对应。当超出五个子功能时,按【↔】键切换到下一页软 功能画面。

1.5.3 其它按键

按键	手册中的符号	说明
MODEL 工作状态	(MODEL)	工作状态键
	【手动快速】	手动快速:与 X-▲、X+▼两键同时按下, 则机床以 10#参数设定的手动最高速运行
U	Uset]	手动进给时进入步进量U
X _{SAV}	(X _{sav})	在测定刀具补偿值时,记忆 X 向的坐标值
ENTER	【回车键】	编辑时使光标下移到下一行行首,而在其他 状态下表示输入到此行结束
	【主轴正】	主轴正转键
主轴反	【主轴反】	主轴反转键
主轴停	【主轴停】	主轴停键
主轴点动	【主轴点动】	主轴点动键
5 主轴升 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	【主轴升】 【主轴降】	在自动、手动卞动态调节主轴转速 S (仅在 主电机变频调速时有效)
4 4	【进给升】 【进给降】	在自动、手动下动态调节进给速度 F

系统概述

6 00倍率	【G00 倍率】	快速倍率切换键
8 (二) (注) (注) (注) (注) (注) (注) (注) (注) (注) (注	【冷却开/关】	冷却液开 / 关, 按一次切换一次, 在手轮模 式下, 用于倍率选择
7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	【换刀】	每按一次,系统按顺序换下一把刀
9 xt J	【对刀】	
	【夹紧】 【松开】	夹紧/松开
循环启动	【循环启动】	循环启动键
存储	【存储/打开】	输入程序名后,调入当前要加工的程序,将 程序、系统参数、刀具参数、机床参数文件 式存人电子盘
0 1111	【刀补修调】	刀补修调键
3 (1) (1) (1) (1) (1) (1) (1) (1)	【手轮倍率】	手轮脉冲倍率设定:将手轮的输出脉冲乘以 设定的倍率数。×1、×10、×100
〕 送给保持	【进给保持】	进给保持
RESET复 ///位	[RESET]	计算机硬件系统复位,进入开机后的初始状态

注:系统键盘有若干复用键,数控系统能自动判断按键的意义,用户无须进行键定的 切换操作。

1.6 开机

第一次开机前,应检查系统外观是否有明显异常,电源连接是否有误,到开关电源接头 是否有脱落,确认无误后方可通电。系统的动力来源为三芯电源插头,引入单相 220V / 50Hz 交流电,接地线接机床强电柜的接地铜排。

1.6.1 开机画面及设计

系统开机时显示出开机画面,如图所示:

图 1.2 开机界面

系统的开机画面可由用户自行设计,用户可自行设计一幅 800×480 点阵的 256 色彩色 图像。

a) 通过 U 盘下载到系统中,具体过程如下:

- 1. 上电时,按下【RESET】键,直到进入升级界面。
- 2. 将设计的图片存到 U 盘根目录下,并根据升级界面的提示修改文件名,再插入 U 盘。
- 3. 按【F1】(U盘),再按【F4】(开机画面),系统开始升级。

b)通过串口升级方式下载到系统中,具体过程如下:

1. 上电时, 按下【RESET】键, 直到进入升级界面。

2. 按【F2】(串口),再按【F4】(开机画面),系统开始升级。

1.6.2 主功能选择

开机后,只有主功能选择有效,用户想使用某个具体的功能,只有进入相关的主功能后, 才能实现。因此,用户必须首先按包含该具体功能(子功能)的主功能选择键,进入对应的 主功能状态,选择所希望的功能。本系统操作介面尽量采用提示方式,使用户了解当前操作 是否为系统所提供。同时按键操作原则是:以尽量少的按键次数,实现用户所希望的功能。

一般说来,要实现某一个具体功能操作,用户只须进行三次按键:

- 1. 按主功能键,系统退出原来状态,进入新的主功能状态。
- 2. 按子功能选择键(一般是 F1~F5 之一),将该子功能置于有效。

3. 在子功能状态下,按具体操作键实现具体功能。

例如,当前系统处于编辑状态下,正在编辑加工程序,用户希望进入操作状态,使 X 轴移动到合适位置,按以下顺序操作:

(1) 按主功能键【MODEL】,系统将刚才所编辑的加工程序自动保存好,然后退出【PRGRM】 主功能,进入【OPERT】主功能,屏幕上显示【OPERT】的主画面。

(2) 按坐标移动键 X-▲、X+▼移动坐标轴。

这是一个一般性的操作,对于其他情况可能需要 2-4 次操作。

1.6.3 子功能选择

在屏幕下方有五个键标有 F1~F5,这五个键的作用是在某一主功能下,选择各种子功能。由于主功能有三种,而各种主功能下的子功能也各不相同,因此,F1~F5的作用也随时

变化,对于当前 F1~F5 的具体定义,在屏幕有提示。因此,F1~F5 又称软定义键或 F 功能键。对于在当前主功能下未定义的 F 键,屏幕上一般无相应提示,按此键系统无响应。本系统在软件版本升级时可能对其加以定义。当 F1~F5 不够用时,可按"↔"键切换到下一页 F 功能键。

Ⅱ 系统编程

2.1 程序段格式

所谓程序段格式,是指程序段书写规则,它包括数控机床要执行的功能和执行该功能所 需的参数,一个零件加工程序是由若干程序段组成,每个程序段又由不同的功能字组成,车 床数控系统常用的功能字如下:

机能	地址	范围	意 义
程序号	P, N	0~9999	指定程序号,子程序号
顺序段号	Ν	0000~999999	程序段号
准备机能	G	00~99	指令动作方式
坐标字	X, U, K, R	$\pm 0.001 \sim \pm 99999.999$	运动指令坐标、螺距、循环次数
进给速度	F	1~6000MM/MIN	进给速度指令
主轴机能	S	$0\sim$ 5000RPM	主轴转速指令
刀具机能	Т	1~8	刀具指令
辅助机能	М	0~99	辅助指令

表 2.1 常用的功能字

数控系统不要求每个程序段都具有上面这些指令,但在每个程序段中,指令要遵照一定 格式来排列。每个功能字在不同的程序段定义中可能有不同的定义,详见具体指令。

数控系统采用的程序格式是可变程序段格式,所谓可变程序段格式就是程序段的长度随 字数和字长的变化而改变。一个程序段由一个或多个程序字组成。程序字通常由地址字和地 址字后的数字和符号组成,例如:

这种程序字格式,以地址功能字为首,后跟一串数字组成,若干个字构成一个程序段。 在上一程序段已写明而本程序段里不发生变化的那些字仍然有效,可以不再重写。尺寸字中, 可只写有效数字,不规定每个字要写满固定数。

在程序段中,表示地址功能的英文字母可以分为尺寸字地址和非尺寸字地址,尺寸字地 址用以下字母表示:X、U、K、R; 非尺寸字地址用以下字母表示:N、S、T、G、F、M、P。

在通常情况下,一个程序段是零件加工的一个工步,数控程序是一个程序段语句序列, 贮存在存储器里。加工零件时,这些语句从存储器里整体读出并一次性解释成可执行数据格 式,然后加以执行。

程序段号用来标识组成程序的每一个程序段,它由字母 N 后面跟数字 0000~9999 组成, 程序段号必须写在每一段的开始,可使用段号自动生成器产生段号。(见程序编辑功能)在 一个程序中,程序段号可以采用 0000~9999 中的任意值,但各程序段号原则上应按其在程序 中的先后次序由小到大排列。为了便于在需要的地方插入新的程序段,建议在编程时不要给 程序段以连续序号,如果在 CNC 面板上进行编程,建议程序段以 10 为间隔进行编号,这样 便于插入程序时赋予不同段号。(见参数 P27#)

2.1.1 宏变量

程序段中可以使用宏变量(P0~P9)来替代数字。首先在程序中用赋值语句对宏变量(P0~P9)进行赋值,在以后的程序中,即可用已赋值的宏变量代换该数值,程序在执行时自动将宏变量换回该变量最近一次的赋值数。如果程序中对该宏变量再次赋值,则新值只对改变后的引用有效,之前的引用仍为原值。

例如:

N0010	P2=1	P5=55	P7=200
N0020	G92	XP5	FP7
N0030	F2=40		
N0040	XP2		
N0050	M02		
这个程序执	行时等同于	- :	
N0020	G1	X55	F200
N0040	X40		
N0050	M02		

2.2 准备功能(G功能)

准备功能用字母 G 后跟两位数来编程, G 功能也称准备功能指令,用来定义轨迹的几何 形状和 CNC 的工作状态。任何一种数控装置,其功能均包括基本功能和选择功能两大部分。 基本功能是系统必备的功能,选择功能是供用户根据机床特点和用途选择的功能,编程时一 定要先看懂机床说明书之后才能着手编程。机床可根据数控系统的功能来配置控制功能,即 机床不一定能实现数控系统的全部功能。

数控系统的全部 G 功能如下:

模态	G00	快速定位
模态	G01	直线插补
	G04	延时
	G09	伺服准确定位暂停
	G10	撤销各种镜像加工循环
	G20	子程序调用
	G22	子程序定义
	G24	子程序结束返回调用程序
	G25	跳转加工
	G26	转移加工(程序内部子程序调用)
	G27	无限循环
模态	G30	放大缩小倍率取消
模态	G31	放大或缩小倍率
	G35	跳跃功能
	G61	后继程序段快速清角
	G62	当前段快速清角
	G64	取消 G62 清角功能
	G74	返回机床参考点(机械原点)
	G75	以机床坐标返回加工开始点
	G76	以工件坐标返回加工开始点
	G83	深孔加工循环

- G84 公制刚性攻丝循环
- G85 英制刚性攻丝循环
- 模态 G90 绝对坐标编程编程
- 模态 G91 增量坐标编程编程
 - G92 修改工件坐标系坐标原点位置(改变刀尖的工件坐标值)
 - G96 恒线速切削
 - G97 取消恒线速切削
 - G98 取消每转进给
 - G99 设定每转进给

注意:以上 G 功能一部分适用于车床,一部分适用于铣床,一部分都适用,以其 G 功能的详细描述为准,本册中,凡针对铣加工的功能均不作叙述。

下面,对以上G功能作详细说明。

2.2.1 GOO——快速定位

格式: GOO X___

说明:

(1)所有编程轴同时以P30#~P32#参数所定义的速度移动,当某轴走完编程值便停止, 而其他轴继续运动。

(2)不运动的坐标无须编程。

(3)目标点的坐标值可以用绝对值,也可以用增量值,小数点前最多允许5位数(不包括符号),小数点后最多允许3位,正数省略"+"号(该规则适用于所有坐标编程)。

- (4)G00 编程时,也可以写作 GO。
- 绝对坐标编程: GO0 X75

增量坐标编程: G91 G00 X-25 或 G00 U-25

2.2.2 G01——直线插补

格式 1: G01 X_ F_ N0010 G00 X0 N0020 G01 X20 F100 N0030 X40 N0040 G0 X50 (退刀)

2.2.3 G04——延时

格式: G04 Kxx.xx 说明: 程序延时 K 后面的编程值(秒)后,继续向下运行,延时范围 0.01~65.53 秒。

2.2.4 G09——进给准停

格式: G09

说明: G09 用于检测伺服电机是否已经运动到指定位置,当伺服跟随误差小于给定值时, 伺服会向 CNC 系统输出一个准停信号(XPSN),当系统在走完某段程序后,如该段有 G09, 则 CNC 在一段时间内检查各轴是否有 PSN 信号输入,该时间由 P89#参数设定,当超过定时, 仍无信号,则 CNC 发出 54#报警继续向下运行。

2.2.5 G20——子程序调用

格式: G20 NXX. XXX 说明: (1)N 后第一个 2 位数为要调用的子程序的程序名, 允许 2 位数, 小数点后 3 位数表示本次调用的循环次数, 可以从 1~255 次。

(2)子程序中的宏变量(P0~P9)在G20调用前,必须赋予明确的数值。

(3)本段程序不得出现以上描述以外的内容。

(4)不同的子程序可重复嵌套调用 10 次,但不得调用本身。

2.2.6 G22——子程序定义

格式: G22 NXX

说明:

- (1) 子程序名以N开头,N后的二位数为子程序名。
- (2) G22 NXX 不得与其他指令共段。
- (3) G22 与 G24 成对出现,形成一个完整的子程序体。
- (4) 子程序内部的参数数据有二种格式:
 - a)常数格式,数据中为编程给定常数,即0~9。
 - b) 宏变量格式,程序中的功能号,参数等数字部分均可用变量表示,而变量的具体值在调用子程序的主程序中由 P×=××定义传入,本系统可处理 10 个变量参数: P0 P1 ····· P9。
- (5) 子程序与转移加工(G25、G26)可混合嵌套最多10次。

(6)在需要由参数定义变量时,可用 P0=××, P1=××等来给 P0#~P9#赋予明确的数值,无论 P 参数在主程序或子程序中出现,该宏变量即用最近一次的赋值来取代。

2.2.7 G24——子程序结束返回

格式: G24

说明:

- (1) G24 表示子程序结束,返回到调用该子程序程序的下一段。
- (2) G24 与 G22 成对出现。
- (3) G24 本段不允许有其它指令出现。
- 例:通过下例说明在子程序调用过程中参数的传递过程,请注意应用。
 - 主程序 P01

N0010	S1000	M03		
N0020	P7=200	P8 =	50	P9=01
N0030	G20	N05		
N0040	M02			
子程序	N05			
N0010	G22	N05		
N0020	G92	X50		
N0030	G01	X40	FP7	
N0040	GP9	X50	FP8	
N0050	G01	FP7		
N0060	G00	X60		
N0070	G24			

注意:(1)调用子程序时如果 P 参数没有定义,则在子程序中 P 参数的值是不定的。 (2)变量也可用于主程序中。

2.2.8 G25——**跳转加工**

格式: G25 NXXXX. XXXX. XXX

说明:

(1)本格式所定义的循环体为N后面的两个程序段号之间定义的程序块(包括这两段), 最后一个数字定义该程序块的调用次数,1~255次,不编认为是1。

(2)G25 指令执行完毕后的下一段加工程序,为跳转加工程序块的下一段程序。 (3)G25 程序段中不得出现其它指令。

例:

N0010 G92 X50

N0020 G25 N0040.0050.02

N0030 G00 X10

N0040 G01 X40 F300

N0050 G00 X50

N0060 G04 K3

N0070 M02

以上程序的加工顺序是这样的:

N0010 - N0020 - N0040 - N0050 - N0040 - N0050 - N0060 - N0070

2.2.9 G26——转移加工(程序内部子程序调用)

格式: G26 NXXXX. XXXX. XXX

说明:转移加工指令执行完毕,下一个加工段为 G26 NXXXX. XXXX 段的下一段,这是 与 G25 的区别之处,其余与 G25 相同。

- 例: N0010 S800 M03
 - N0020 G04 K2
 - N0030 G01 X2 F20
 - N0040 G00 X0
 - N0050 G92 G90 X0
 - N0060 G01 X20 F300
 - N0070 M00
 - N0080 G26 N50.70
 - N0090 X0
 - N0100 M02

以上程序的加工顺序是这样的:

N0010 - N0020 - N0030 - N0040 - N0050 - N0060 - N0070 - N0050 - N0060 - N0070 - N0090 - N0100 - N0050 - N005

2.2.10 G27——无限循环

格式: G27 NXXXX. XXXX

说明:

(1)N 之后第一个段号与第二个段号之间的程序段为无限循环的区间,一旦进入到 G27 状态,系统将无限地重复执行这一块程序段所定义的运行轨迹。

(2)为保证每次循环开始时,坐标不发生偏移,要求该程序块为封闭轨迹,否则将造成 每次开始时起点漂移,最终越出工作台。

2.2.11 G30——放大缩小倍率取消

格式: G30

说明:执行 G31 放大缩小时,G30 取消 G31 的作用。

系统编程

2.2.12 G31 — 放大或缩小倍率

格式: G31 KXX.XX 说明: (1)倍率范围为0.001~65.5,即K0.001~K65.5。 (2)倍率的效果是将加工轨迹的各个部分尺寸均匀地放大或缩小K倍。 (3)倍率对刀具尺寸不产生效果。

2.2.13 G35——跳跃功能

- 格式 1: G35 X_F_
- 格式 2: G35 X_K_F_
- 说明:在G35指令后,像G01一样可以指令直线插补。
- B094: =1: G35按编程值重置绝对坐标 =0: 不变
 - (1)该指令执行时,若输入了外部跳转信号,则中断该指令执行,转而执行下个程序段。

(2)格式1在编程中出现G35X xx时,系统默认检测P69#参数设定的输入口信号,当 信号有效时,若B094=1系统将X坐标置成X xx后继续往下执行,若B094=0 X坐标不变继 续往下执行;如果在X轴走完编程值后未检测到信号,系统不做处理继续往下执行。

格式 2 在编程中出现 G35X <u>xx</u> K <u>xx</u>时,系统检测 K<u>xx</u>设定的输入口信号,当信号有效时,若 B094=1 系统将 X 坐标置成 X <u>xx</u>后继续往下执行,若 B094=0 X 坐标不变继续往下执行;如果在 X 轴走完编程值后未检测到信号,系统不做处理继续往下执行。

N0010 G00 X50

- N0020 G35 X0 F1000 (系统在这过程中检测 P69#参数设定的输入口信号,当信号 有效时系统将 X 坐标置成 0 后继续往下执行)
- N0030G01X52F150N0040G00X50
- N0050 M02
- N0060

2.2.14 G61——当前段与后续加工段连续清角

格式: G61

说明:本段与后续加工轨迹均为尖角连接,直到 G64 取消之。(见 4.2.1 说明) 例: G01 X100 F100 G61

2.2.15 G62——当前段快速清角指令

格式: G62

说明:本段轨迹与下段之间为尖角过渡。

2.2.16 G64——**取消清角过渡**

格式: G64

G61~G64 说明:

在 4.2.1 中提到两段加工程序段间系统控制的切削速度不变,但二段轨道之间会出现过 渡弧度,在一些对工件型面有要求的场合,必须消除这些弧度,如有阶轴,各种端面等。此 时,采用了 G61 或 G62 可以使刀具在完全运行完本段程序后才开始下一段程序,保证二型面 之间的形状与编程形状吻合,称之为"清角"功能。

在切削加工时,由于进给速度很小。约F300以下,在切削时间常数(39#)较小(<100 毫秒)时,该过渡弧度也很小,对工件的影响也很小,在满足加工要求的前提下,不采用清角功 能可以提高加工效率,减小冲击振动,有助于提高光洁度,但在要求较高的场合或必须为尖角, 推荐采用 G61(G62)功能。

G62 只对当前程序起作用,即本段程序实现清角,而其后的程序仍然采用过渡弧度方式。 G61 对当前段及后续程序均有效,直到G64 取消,过渡加工只适用于连续的G01,G02,G03,一旦 后续程序不是以上轨迹,系统自动取消过渡功能。

2.2.17 G74——返回参考点(机械原点)

格式: G74 X_____ 说明: (1)本段中不得出现其他内容。 (2)使用 G74 前必须确认机床装配了参考点开关。

格式: G75 X__

说明**:**

(1)本段中不得出现其他内容。

(2)G75指令执行后,X轴运动到机床坐标XP为P8#参数设定的坐标位置。

(3)G75执行完毕后,X轴的工件坐标(大坐标)恢复为P18#设定的值。

(4)B033=1(上电无须回零模式)时,G75无效。

(5)G75功能须保证开始位置的机床坐标与工件坐标是其实际刀具在该位置的坐标。

2.2.19 G76——从当前位置返回加工起始点(进刀点)

格式: G76 X__

说明:

(1)本段中不得出现其他内容。

(2) 机床上相对于原点的坐标以大坐标显示,加工开始的刀具位置坐标记忆于P18#参数,该功能可从机床任意位置回到该处,速度与G00相同。

(3)加工开始点(P18#)是参考加工原点(如卡盘中心)所设定的点,G75执行的结果 是使刀尖移动到工件坐标与参数P18#相同的坐标位置。

2.2.20 G83——深孔加工循环

用于 X 轴的间歇进给。每次进给切削后都快速退刀到孔顶位置并暂停 P100#参数设定的 秒数(以利于排屑),之后快进到距上一次孔底 K 距离的位置。进行又一次的切削进给循环, 直到切削到 U 代表的孔底位置。暂停 R 指定的秒数,最后快速退刀到孔顶位置,G83 指令段 执行结束。

格式: P10=XX. XXX P11=XX. XXX

G83 X__ U__ N__ K__ F__

- 说明:如 P10 或 P11 不编,表示不延时
- P10=: 孔底延时
- P11=: 孔顶延时
- X: 孔顶坐标
- U: 孔底坐标
- N: 每次进给深度(无符号数)
- K: 每次退刀后,再次进给时,由快进转换为工进时距上一次孔底的距离(无符号数)

图 2.1 G83 指令动作图

2.2.21 G84——公制刚性攻丝循环

格式: G84 Z__ K__ U__ N __ 说明:

(1) G84(G85)只能在安装了主轴编码器的情况下使用。

(2) Z 为攻丝终点坐标, K 为螺距。

U: 材料补偿量,取值范围 0-15,一般材料取 0(不编 U 值),脆性材料可以加大 U 提高攻丝转速。粘贴材料适当加大(5-10)可以减小断丝功的可能。U 不编则由 P87#决定。

N: 当攻丝进给达到 Z 值后系统发出主轴停止信号,当主轴降至 N 设定转速时, 系统发出反转信号,从而减少换向时间,N 不编时系统检测到主轴转速降到 0 后才 发出主轴反向信号。

对于主轴是变频调速时,由于变频器本身的特性,编写N将不起作用。

(3) 刚性攻丝时主轴转速的选择。

刚性攻丝时主轴每转一转,Z向沿主轴轴向进给一个螺纹螺距,主轴加减速时 也严格维持这一关系。攻丝时主轴倍率,进给倍率被禁止。

刚性攻丝时 Z 向的进给与主轴同步,当攻丝进给到达 Z 值后,系统发出主轴 停止信号,主轴从设定转速降到零速值的这段减速时间内 Z 向仍然是在跟进(主轴 减速时间越长,跟进长度越大),为了减少减速时间内的跟进长度,应尽量减小主 轴升降速时间。

攻丝进给速度与主轴转速有如下的比例关系:

F=S×K

(式 2.1)

式中:

F——攻丝进给速度; S——主轴转速; K——丝攻螺距;

说明:

操作 1: 快速定位到攻丝起始点,主轴正转。 操作 2: 攻丝进给到 Z 点,主轴停。

操作 3: 主轴反转, 丝攻退回到起始点主轴停。

2.2.22 G85——英制刚性攻丝循环

格式:同 G84。 说明:螺距为 K 牙/英寸。

2.2.23 G90——绝对坐标编程编程

格式: G90

说明:

(1)G90 编入程序时,以后所有编入的坐标值全部是以编程零点为基准的。

(2)系统上电后,处在 G90 状态。

- 例: N0010 G90 G92 X20
 - N0020 G01 X40 F100
 - N0030 G01 F50
 - N0040 M02

2.2.24 G91——增量坐标编程编程

格式: G91

说明: G91编入程序时,之后所有坐标值均以前一个坐标位置作为起始点来计算运动的 编程值。在下列坐标系中,始终以前一点作为起始点来编程。

- 例:N0010 G91 G92 X20
 - N0020 G01 X20 F100
 - N0030 X20
 - N0040 M02

G90, G91 适用于 X 的编程, 即 G90 有效时 X 的值为绝对量, G91 有效时, X 的值为增量编程, 而对于 U 无论是 G90 或 G91, 均为增量编程。

2.2.25 G92——设定工件坐标系

格式: G92 X___

说明:

(1) G92 只改变系统当前显示的坐标值,不移动坐标轴,达到设定坐标原点的目的。

(2) G92 的效果是将显示的刀尖坐标改成设定值。

2.2.26 G96——恒线速切削

格式: G96

说明:

(1)恒线速切削只适用于有模拟量输出的系统,控制主轴无级变速。

(2)当 G96 执行时, CNC 以此时的切削速度为基准, 根据 X 方向是进刀还退刀 线性调整主轴的转速。

(3)当主轴的转速达到系统的额定最大转速或最低转速时(由 P26#, P28#限定) 时,X向连续进刀、退刀,主轴的转速不再变化。

(4) G96 由 G97 及 M05、M02 等指令来取消。

(5)由于主轴变频器有升 / 降速时间设定,当 G96 生效时,变频器的升 / 降时间常数越短,则主轴转速的跟随性越好。

(6)当G96有效,而此时X值为0,系统报警(线速度为0)。

2.2.27 G97——取消恒线速切削

格式: G97

2.2.28 G98——**取消每转进给** 格式: G98

格式: G99 FXXXXXX

说明: G99 后面的FXXXXX 为每转进给的距离,单位为µm、即F后面只能为整数。这 与每分钟进给的单位不同。

2.3 辅助功能(M功能)

M 功能也称辅助功能,用于 CNC 输入输出口的状态控制。辅助功能由字母 M 及后面两位数组成,数控系统的辅助功能如下:

- M00 程序暂停
- M01 条件暂停
- MO2 程序结束
- MO3 主轴正转
- M04 主轴反转
- M05 主轴停止
- M08 开冷却液
- M09 关冷却液
- M10 工件夹紧
- M11 工件松开
- M12 主轴高速档继电器开
- M13 主轴高速档继电器关
- M20 开指定的继电器
- M21 关指定的继电器
- M24 设定刀补号
- M25 并行换刀时等待换刀结束
- M28 伺服主轴设定为速度模式
- M29 伺服主轴设定为位置模式

M41~M44 指定主轴档位转速

M71~M85 M功能脉冲输出

M 功能是用来使机床外部开关接通或断开的功能,如主轴启动、停止,冷却电机接通或 断开。M 功能常因机床生产厂家及机床结构和型号不同,与标准规定的 M 功能有差异。 下面就 M 功能作详细说明。

2.3.1 M00——程序暂停

格式: MOO

说明:程序里出现 MOO,本段程序运行结束后暂停等待。按下加工启动键,程序继续运行。

2.3.2 M01——条件暂停

格式 1: M01 KXX 或 M01 NXX

格式 2: MO1 KXX UXX 或 MO1 NXX UXX

说明: K (或N)后二位数对应于某 I/0 口的编号,程序执行到此处便停下等待,直到 外部向该 I/0 口输入一低有效 (或高有效)的信号,程序向下执行。要求外部电平有效时间 >15 毫秒。K 为高电平有效,N 为低电平有效。系统的输入口编号定义存储在系统中,可在 参数——诊断界面中查到每个输入口的输入号。U 为外部向该 I/0 口输入信号的等待时间, 单位秒,当等待时间超过 U 设定的值时,系统会提示 M01 等待超时报警;若不编写 U 则默认 一直等待。

2.3.3 MO2——程序结束

格式: MO2

说明:

(1)M02 结束加工程序。

(2)当程序中不编 M02,若位参数 B003 =0,程序结束后关主轴(M05)和冷却(M09)。 若位参数 B003=1 并且不编 M02,程序结束后不关主轴和冷却,仅结束本次循环。

2.3.4 M03——主轴正转

格式: M03

说明:

(1)程序里写有 M03 指令,首先使主轴正转继电器吸合,接着 S 功能输出模拟量,控制主轴顺时 M03 针方向旋转。它控制 M03 吸合继电器。M03 动作顺序:

(2) 若 B012=0, M03 为保持输出

(3) 若 B012=1, M03 为脉冲输出,脉冲延时由 P13 # 参数决定。

2.3.5 M04——主轴反转

格式: M04

说明:

(1) 控制 M04 继电器, 启动主轴反转。M04 动作顺序:

(2) 若 B012=0, M04 为保持输出

(3) 若 B012=1, M04 为脉冲输出, 脉冲延时由 P13 # 参数决定

2.3.6 M05——主轴停止

格式: M05

说明:

(1)M05 指令输出脉冲信号,关主轴正或反转控制继电器,停止输出模拟量,主 轴旋转停止。输出脉冲信号宽度由 P14#参数决定。控制 M05 继电器功率输出。

(2) 如果 P12#参数值≠0,系统还输出短信号到制动继电器,提供主轴制动功能。
(3) 如果 B013 参数=1, M05 关 S1∽S4 继电器; B013=0, M05 不关 S1∽S4 继电器。

(4) M05 指令执行过程:

图 2.5 M05 指定执行过程

2.3.7 M08——开冷却液

格式: M08

说明: M08 功能在本段程序开始时执行,接通冷却液控制继电器 (M08 继电器)。

2.3.8 M09——关冷却液

格式: M09

说明: M09 功能在本段程序运行完毕后,关掉冷却液控制继电器(M08 继电器)。

2.3.9 M10/M11——主轴夹紧松开控制

格式: M10 或 M11

说明: 详见第五章的描述。

2.3.10 M12/M13---主轴高速档继电器开/关

M12/M13 用于开/关主轴高/低速换档继电器,系统规定 M12/M13 继电器与 S3 合用。

2.3.11 M20—开指定的继电器

格式: M20 KXX

说明: K 后二位数对应某继电器号,执行到该句后,系统的继电器或功率输出有效,使 外部继电器吸合,并延时 0.02 秒后继续向下执行。

2.3.12 M21 — 关指定的继电器

格式: M21 KXX

说明: K 后二位数对应某继电器号,执行到该句后,继电器输出无效,使外部继电器断 开,并延时 0.02 秒后继续向下执行。

2.3.13 M24——人为指定刀补号

格式: M24 KXX

说明:在第一次上电或其他必须改变刀补号时,它只改变刀补号而不调整工件坐标, K后二位数取值为00-10。M24不得在程序中使用。

2.3.14 M25——等待换刀结束

采取并行换刀时,换刀过程中各坐标轴电机仍然在运动。如果希望在换刀完成后才开始下一段加工,可在程序中增加 M25 指令。换刀结束后才开始下一段加工,以防撞刀。如果在退刀过程中无撞刀风险,则不需要 M25 指令,以提高加工效率。

2.3.15 M28/M29——主轴的速度/位置模式:

M28: 输出 YTRF 低电平使主轴伺服进入速度模式,用于正常的切削。 M29: 输出 YTRF 输出高电平使主轴伺服进入位置模式,与其他轴(X、Z)进行插补。

2.3.16 M41~M44——指定主轴转速档

适用于变频器驱动的机械变速主轴。

2.3.17 M71~M85----M 功能脉冲输出

格式: M77 (以 M77 为例)

说明:考虑到各种机床对 M 功能要求不同,系统设置了该功能,用于控制继电器板上的继电器输出短时间的通断信号,其动作顺序如下(以 M77 为例):

(1) 控制继电器板上的 7 # 继电器, 使之吸合。

(2) 延时 P15#参数, P15#参数=0 时延时 0.4 秒。

(3) 断开 7#继电器。

有关各继电器的输出号,显示在系统的诊断界面,或查阅技术手册。

2.4 F、S、T 功能

F、S、T 功能是进给功能、主轴功能、刀具功能的简称。

2.4.1 F——进给功能

进给功能一般称 F 功能, F 功能可以直接规定 G01、G02、G03 的进给速度, F 功能用字 母 F 及数字表示,其切削进给速度为毫米/分。数控系统的进给速度从 F1-F15000mm/min 之间,用户可根据实际切削情况,任意选择。当采用每转进给时,F 为微米,即每转主轴进 给多少 μm。

2.4.2 S——主轴转速控制

主轴控制分主轴变频调速电机和主轴变速电机(双速电机、三速电机)两种。

2.4.2.1 主轴带变频电机

由 S×××、M03、M04、M05、以及一系列参数实现主轴控制,并确定主轴控制的模拟量输出(出厂设定 0-10V)。一般机床主轴有一级手工换档,以实现不同的转速范围,使得低速时仍有较大的输出扭矩。可输出高速、低速等四档模拟电压值。

有关主轴控制见第五章的描述。

2.4.3 T——**刀具功能**

刀具功能也称 T 功能,用来进行刀具选择,使用电动刀架或排刀由 P05 # 参数(=1:电 动刀架,=0:排刀)决定。刀具功能用字母 T 及后面的数字组表示。对于电动刀架,控制回 转刀架进行换刀,并改变相应刀号;对于排刀,刀号一律为 0,仅改变刀补号。

2.4.3.1 T 功能格式

Tn.m	n:刀号 (1-8)	m:刀补号(1-10)
有以下几种书写形式:		

	电动刀架	排刀
Τn	换 n 号刀,用 n 号刀补	用 n 号刀补
Tn.0 或Tn.	换 n 号刀,不带刀补	同上
T 0. m或T. m	不换刀,用m号刀补	用m号刀补
Tn.m	换n号刀,用m号刀补	用m号刀补
Т 0. 0	无动作	无动作

2.4.3.2 刀号与刀补号

对于排刀,刀号一律为0,通过改变刀补号来修正刀尖的偏差;对于电动刀架,刀号一律由刀架内的传感器得到,CNC不作记忆。因此,无论排刀还是电动刀架,CNC均可准确地了解刀号。而刀补号 CNC 无法通过外部开关得到,尤其是对于排刀以及刀号与刀补号不一样时, CNC 只能通过记忆得到刀补号,在正常工作中刀补号在1~10之间,但是在特殊情况下,如 CNC 第一次使用、系统总清除或内存紊乱引起刀补号超出上述范围或不准时,可用 M24 人为 指定刀补号,但此时有可能造成 CNC 实际坐标与显示坐标不符,这时需重新找正 CNC 坐标。

注: 若参数设定为电动刀架(P05 # 参数=1), 而 CNC 系统未与电动刀架连接或连接不正确, 或刀补号超限, 此时系统会出现错误 06。

2.4.3.3 加工中修改刀补

在加工中如发现工件尺寸有变化,可实时修改刀补值,其过程如下:

1. 暂停或单段有效使坐标轴电机停止运动;

- 2. 按刀补修调键;
- 3. 修改刀补值;
- 4. 启动加工循环。

注: 修补后的刀补只对后续刀具起作用, 对当前刀无效。

2.4.3.4 刀补表

刀补表间接记忆了各把刀之间刀尖的差值以及刀尖的相位,也就是说,刀补值需在换刀时经计算得出来。在 PARAM 状态下,按 F1 键,屏幕上显示 10 个刀具参数,DX 为 X 方向的刀补值,R 为刀尖圆弧半径,PH 为刀尖与工件相对位置的相位关系。

2.4.3.5 电动刀架的功能动作顺序

系统的 P5#用于设定不同的换刀方式:

- P5#=0 排刀
- P5#=1 常见的电动刀架

P5#=2~10: 用户自定义的其他刀架

对于电动刀架,其功能在出厂时内置 PLC 的动作顺序如图所示:

图 2.6 PLC 动作顺序

2.4.3.6 对刀方法及步骤

本系统采用的试切对刀法,在产生刀补的同时,也建立了刀具的工件坐标,为了便于操 作,系统提供了 X 向记忆对刀参数的方式,具体操作步骤如下:

① 在卡盘上夹一毛坯件; 系统进人手动操作方式;

② 转动刀架,选择需要对刀的刀号,如"T1";然后选择适当的主轴转速及手动进 给速度,启动主轴;

③ 移动刀具,用选择好的刀具在毛坯上车削出一小段外圆(或内孔),按【Xsav】 键,屏幕下方出现"X向刀偏已保存";

④ 手动退出刀具,停下主轴,测量并记录切削后外圆(内孔)的直径;

⑤ 按【对刀】键进入刀具补偿参数界面,屏幕上显示"X0.000"(显示最后一次X 向刀补输入值),在键盘上输入步骤4中所测量出的直径,按【ENTER】键确认后再按【存储/打开】键存盘。

注意: 若刀具在工件轴线的另-侧切削(即刀具位于轴线的反方向),则输入的直径为负值。

Ⅲ 系统操作

正确操作数控系统,必须掌握各种功能的操作方法及所显示的各种信息的含义。数控系统给用户提供的可操作界面如下:

1. 键盘面板: 接受用户对系统的指令,并据此协调系统内部状态,实现全部系统功能

2. 通讯接口:可与任何配备标准 RS232 串行接口的计算机进行通讯。

3. 彩色液晶屏,实时提供各种系统信息。

4. 各种输入/输出接口。

5. USB 接口:插入 U 盘与控制系统交换加工程序或参数文件。

3.1 安全、保护与补偿

一般情况下,步进电机开环驱动由于自身原理,在发生超程堵转时不会对机械产生重大 影响,而对于交流伺服电机为执行元件的系统,在交流伺服的过载能力,输出扭矩会急剧增 加,有可能发生机械损坏甚至严重事故。因此,机床的安全保护对于以交流伺服单元驱动的 机床来说尤为重要。系统通过以下诸多方面来进行限制出错的可能性。

3.1.1 急停

急停按钮应具备常开 / 常闭触点各一付,其中,常开触点应接到系统(见技术手册)以 便在急停按钮按下时系统进入急停状态。

急停按钮的常闭触点强烈推荐接入机床的强电柜给主回路(主轴及伺服)供电的控制回 路内,以便在紧急情况时,以最高的可靠性保证主轴与伺服停止运行。

系统在收到急停信号时,切换到手动方式,出现55#报警,并封锁一切操作。

3.1.2 硬限位

对于以交流伺服为执行元件的机床,每个轴应该装上高可靠的机械式三联行程开关,在 系统软限位未起作用时强行切断主回路供电控制电路(见急停),一般三联开关:两联接入强 电控制回路作为两个方向的限位输入,第三路可作为返回机床零点的初定位信号。

由于接近开关动作不能直接切断控制回路,所以一般不推荐用感应式接近开关作为伺服 轴的限位开关,如必须采用,应选用 NPN 型 0C 门输出的接近开关。

3.1.3 软限位

系统提供内部定时检测功能实时监控系统的坐标是否越过人为设定的区间,一旦超过,则停止运行,切换到手动方式,并发生40#报警,其过程由一系列参考体系构成。

(1) 由位参数 B092=0 决定是以机床坐标还是以工作坐标 (B092=1,大坐标) 作为软限位的 坐标基准。

(2)B024=0:软限位功能返回机床参考点后有效,B024=1:软限位功能无须返回参考点。

(3)各轴的软限位系统参数 P60#---P65#定义,一旦系统选择的坐标(机床坐标或工件坐标)越过各轴区间,系统即报警(见参数表)。

(4) 当限位发生时,各轴坐标运动降速停止。

(5) 当软 / 硬限位降速停时,其负加速度的时间常数由 P44#参数决定,而最大速度上限则一律采用 G00 的速度以计算加速度

(6)软限位降速停止时,会造成过冲越过软限位区,其加速度越小,越过区间则越长,

可降低时间常数 P44#的方法提高加速度,减小越界长度。P44#须小于 G00 或 G01 的时间常数。

3.1.4 间隙补偿

对于具有一定反向间隙补偿的机械传动机械,系统可以补偿其造成的精度损失,但不能 期望补偿后的效果与无间隙的加工质量相同,尤其是在圆弧加工过象限时,间隙值越大,对 品质的影响越大,因此,机床应尽可能减少间隙值。

系统采取附加运动的原理处理间隙,其运动的加速度由 P39#时间常数及 P48#补偿速度 上限计算出。

3.1.5 丝杆螺距补偿

由于制造及温度等综合因素的影响,丝杆螺距误差从统计上讲,属于系统误差,而非随 机误差,数控系统认为在两个相邻测量点之间的误差在测量距离足够小时(≤1.5—2倍螺距) 其误差呈加权线性分布,因此系统在进行螺距误差补偿时,除保证测量点上的补偿准确外, 对于测量点之间的误差仍然进行加权补偿,从而保证在整个丝杆的全行程内,每个系统周期 (约 4ms)都对丝杆误差进行补偿,而不是孤立地只对测量点进行补偿。

图 3.1 丝杆螺距补偿

在加权补偿的图形中可看出,丝杆长度范围任意一点的补偿量与邻近的测量点的补偿量 是不同的,而任意一点补偿量的确定,除与当前点左右两侧量点的误差值有关外,还与邻近 测量点前后的误差变化量有关。螺距补偿的实现条件见4.5.1。

3.2 PRGRM(程序)主功能

按【MODEL】键后,切换到程序管理主功能。如图显示:

程序管理	里						
程序名	属性	长度	程序名	属性	长度	三日用家	🕺 218
POZ	R₩	83	P18	R₩	57	剩余空间	1 217088
P07	R₩	87758	P19	R₩	57	- 已存程)	茅数 11
P08	R₩	87758				剩余程)	茅数 189
P09	R₩	87758				*	粉文化
P10	R₩	87758				2.00	以入IT
P11	R₩	21289				- 又件 长	皮 又件 长度
P12	R₩	4654				PAM 35	36 BK2 3536
P13	R₩	4653				BK1 35	36
P15	R₩	48					
•		刪	除	复	制	浏 览	编辑

图 3.2 程序管理

系统中最多可保存 200 个文件,最大内存 2M,对每个程序名,系统显示以下信息:

图 3.3

3.2.1 程序名输入原则

在系统中,只有主程序能进行加工,主程序以P或N为第一个字母。子程序以N为第一 个字母,子程序只能被主程序调用。主程序或子程序后跟四位数字表示不同的程序号,系统 规定,主程序可以是 P0000~P9999 或 N0000~N9999 之间任何一个,子程序可以是 N0000~ N9999 之间任何一个。

输入程序名时,首先输入 P(或 N),然后按键 0~9 输入四位数字,按回车键后若 P27# 参数=0,系统不自动生成程序段号,P27#参数≠0 时自动生成程序段号。段号增量为 P27# 参数,输入完毕,系统对输入的程序名进行处理。

3.2.2 程序编辑

程序管理画面上按【F5】键,屏幕上与F5 对应的按钮被按下,同时光标在屏幕左下方 "请输入文件名"后闪烁,用户可输入一个主程序名 P0000~P9999 或子程序名 N0000~ N9999,按回车后进入编辑画面。编辑画面如图:

文件编辑 P11		行	1列 1
N10 G92 X-0.762			
N20 G01 X-1.439			
N30 G01 X-1.270			
N40 G01 X-1.947			
N50 G01 X-2.286			
N60 G0 X-2.286			
N70 G01 X-2.794			
N80 G01 X-3.641			
N90 G0 X-3.641			
			
	^	•	則则

图 3.4 程序编辑

若该程序已存在系统中,则将该程序显示在屏幕上,若是新程序,屏幕上程序显示区中 无任何程序,屏幕中间空白处供用户编辑,系统最大可以编辑约 40K 的程序,如果程序为只 读属性,则不能进行修改。

第一行显示当前程序名,以及光标所在的行号和列号,底行为编辑功能键提示,此时 F 功能键成为编辑程序时的子功能键。中间为程序显示区,用户可以在其中编辑程序。

字符数字键:每按一次字符或数字键,在光标位置上出现所按字符或数字,同时光标及 其后的字符均后移一个字符位置,即在原光标位置上挤进一个字符(插入方式)。

编辑功能键:由F功能键和回车键【ENTER】组成。编辑功能键的作用是移动光标到合适位置,以便加进、删除一个(或一行)字符,它们并不直接在程序中添加字符。回车键的作用是使光标到达下一行的行首。若它处于程序中间某一行中,会在该行与下一行之间插入一个空行,同时将原来该行光标位置向后的所有字符带到空行中,产生新的一行。

例如:编辑下面两段程序:
 N0010 G00 X100
 N0020 G01 X10
 按键顺序为: N-0-0-1-0-G-0-0-X-1-0-0-ENTER

编辑时,以下键有效:

- F1: 光标左移一个字符,程序内容不产生任何变化。到行首按 F1 无效。
- F2: 光标右移一个字符,程序内容不产生任何变化。到行末按 F2 无效。
- F3: 光标上移一行,当光标到达屏幕的程序区第一行时,如果该行是程序的第一行,再 按 F3 无效。如果它不是程序的第一行,按 F3,整个屏幕上的程序下滚一行。
- F4: 光标下移一行,当光标到达屏幕的程序区末行时,如果该行是程序的最后一行,再按F4无效。如果它不是程序的最后一行,则屏幕上的程序上滚一行。
- F5: 删除光标前的一个字符,同时该字符后面的所有的本行字符均前移一位,以填补空缺。当光标位于行首时按 F5 将使本行移到上一行的末尾。

按【↔】键后:

- F1: 将光标移至行首
- F2: 将光标移至行尾
- F3: 将光标移至文件首
- F4: 将光标移至文件尾

注意:

严禁非正常退出编辑状态,否则系统中的部分程序甚至全部程序将被破坏,这些非正常退出包括:

(1)在编辑时按硬件复位、关机或电网瞬时掉电。

(2)若编辑一个很大的程序,系统可能要等待一会才能进入编辑画面,在等待时发生上 述行为,会破坏一部分或全部程序。

发生以上情况,本系统不能保证程序的完备性。

如需退出编辑状态,只需按某主功能键,系统便切换到其它主功能状态,在退出之前, 系统自动将用户编辑的程序进行处理后保存,并将程序记录于目录,反映在程序名表中。

3.2.3 复制文件

将某程序复制成另一程序。按【MODEL】主功能键进入程序管理,再按【F3】,"复制" 按钮被按下,同时在屏幕左下方"请输入文件名"中出现光标,在光标处键入将被复制的程 序名,如 P67 (P67 必须是已在系统中的程序),按回车键后系统提示:"将程序复制为",光 标在其后闪烁,再输入复制的目标程序名,如 P68 (P68 必须是不在系统中的程序),按【ENTER】 后复制完成,新的程序产生,同时程序名表中也发生相应的改变。

3.2.4 删除文件

本功能是将一个无用的程序从系统中删除掉,可以是主程序,也可以是子程序,只要它 出现在程序名表中。步骤:

- 1. 按【MODEL】进入程序管理界面;
- 2. 按【F2】, 屏幕下方与 F2 对应的按钮"删除"被按下,输入需要删除的程序名(全部 删除时,输入"P..");
- 3. 按【ENTER】键后该程序即被删除。

注意:程序一旦被删除后,将无法恢复,故删除时,务请仔细操作。

3.2.5 修改程序属性

数控系统的每一个程序可有两种属性,分别是:

- a)读写 ;
- b)只读 。
- 对于读写属性,可进行一般的编辑,删除等。对于只读属性,程序只能显示在屏幕上供

观看,而不能在其中增减字符。此功能可防止误操作破坏程序。

操作步骤:

1. 按【MODEL】进入程序管理界面;

2. 按【↔】;

- 3. 按【F5】, 屏幕下方与 F5 对应的按钮"程序属性"被按下, 同时在光标处输入程序名;
- 4. 按【ENTER】键后,系统提示:"请选择新属性 0:读写、1:只读",表示该程序将被赋予属性:
- 5. 输入 0、1 两个数字之一,则该程序属性将被重新设定,同时在程序名表中也有变化, 这两个数字的含义:

0: 普通属性 1: 只读属性

一个新程序编辑后,其属性缺省为0(RW读写属性)。

3.2.6 输入和输出功能

系统通过 RS-232 串行口输入、输出程序。操作:

- (1) 按【MODEL】进入程序管理;
- (2) 按【→】出现"串口输出"(F2) 和"串口输入"(F3)。

注:

(1)程序名输入时,若打错字符,可用"前删"键修改。

(2)与计算机进行程序交换的具体操作请见通讯软件上的说明文件。

3.2.6.1 串口输入

可以经串行口从 PC 机或其他数控系统输入一个程序。

按【F3】, 屏幕下方"串口输入"按钮被按下, 系统提示"请输入文件名"并在后面显示光标, 在光标处输入程序名(必须是系统中没有的程序), 按回车键后输入过程开始。

通讯传输时,在屏幕上可见到输入的字符依次显示。

3.2.6.2 串口输出

将已存储在系统中的某个程序输出给 PC 机或其它数控系统。步骤:

按【F2】,幕下方"串口输出"按钮被按下,系统提示"请输入文件名"并在后面显示 光标,在光标处输入程序名(已存储于系统中),按回车键后输出开始。

3.2.7 浏览

浏览功能能快速浏览 CNC 存储区中的用户程序内容,该功能可以打开任意大小的文件, 进行查看,但不能进行修改。

在程序界面下,按【F4】再输入文件名,系统打开相应文件,若直接回车,系统打开文件列表的第一个文件。此时,功能键 F1~F5 被重新定义。

F1:编辑。按【F1】可编辑当前显示的程序内容。

F2:程序首。将光标移至文件夹。

F3:程序尾。将光标移至文件尾。

F4: 上一段程序。按【F5】显示 CNC 用户程序区的下一个程序名及内容。若当前程序为用户程序区的最后一个程序,按此键后显示第一个程序。

F5: 下一段程序。按【F4】显示 CNC 用户程序区的上一个程序名及内容。若当前程序为用户程序区的第一个程序,按【F5】后,显示最后一个程序内容及名称。

3.3 U 盘管理

系统提供了 USB 接口,支持对 U 盘的访问。在 U 盘管理界面下可以实现 U 盘内容和用户 程序存储器间的导入和导出。
3.3.1 U **盘管理说明**

(1) 支持采用 USB1. 1/USB2. 0 协议的 U 盘存储器, U 盘文件系统格式为 FAT 格式。

(2)可管理的最大U盘目录深度为6级。

(3) U盘文件名显示格式为 8.3 格式,即 ××××××××××××× k式,长于 8.3 格式的文件名以缩减为 8.3 的格式显示,支持中文目录名。

(4)支持与用户程序存储器间文件相互存储。

(5) U盘文件名自动排序。

3.3.2 U 盘管理界面及界面介绍

(1)打开U盘防护盖,插入U盘;

(2) 按【MODEL】键, 切换进入 U 盘管理界面; 如图所示:

U盘管理	[UIN					
程序名	属性	长度	程序名	属性	长度	程序名	长度
P02	R₩	83	P18	R₩	57	[加工程序]	文件夹
P07	R₩	87758	P19	R₩	57	HZK	232K
P08	R₩	87758				P13	253
P09	R₩	87758				P20	42
P10	R₩	87758				離刻机~1.NC	178
P11	R₩	21289				相叶.NC	99K
P12	R₩	4654				2007 1 NC	9696
P13	R₩	4653				177 上、1.110	0.00
P15	R₩	48				四分之 1.m	, 66
存入し	J盘	─文件٦	下页	存入系	统	A	•

图 3.5 U 盘管理

(1) U 盘程序列表区:显示 U 盘当前目录下的文件列表

(2) 用户程序列表区:显示用户程序存储器中的程序列表

(3) U 盘路径显示区:显示 U 盘当前文件的路径,最大深度为 6 级

(4) 状态栏: 错误操作信息和操作提示信息以及操作结果信息显示栏

U 盘管理界面下 F 功能键介绍:

存入U盘,将用户程序列表中的程序存入U盘当前目录

文件下页,用户程序列表每屏最多显示 18 个用户程序,当程序数目超过一屏时,可用循环翻页功能显示用户程序列表中当前未显示出的程序

存入系统,将选中的U盘文件存入用户程序存储器

按【◆】键之后:

浏览程序,浏览用户程序列表中的程序

浏览U文件,浏览选中的U盘文件

删 U 盘文件, 删除选中的 U 盘文件

U 盘文件列表的显示操作键介绍:

【上页】: 当前 U 盘文件目录列表向前显示一页

【下页】: 当前 U 盘文件目录列表向后显示一页

【▲】: 上移光标,光标在 U 盘文件列表区上移一行,当光标移至 U 盘文件列表区顶部,继续按【▲】键,当前文件列表内容整体下移一行,同时将目录列表中未显示的前一个文件显示在列表顶部。若当前光标位置上已是 U 盘文件列表的第一个文件或目录,则停止上移。

【▼】: 下移光标,光标在U盘列表区下移一行,当光标移至U盘文件列表区底部,继续 按【▼】键,当前文件列表内容整体上移一行,同时将目录列表中未显示的下一个文件显示 在列表底。若当前光标位置上已是U盘文件列表的最后一个文件或目录,则停止下移。

3.3.3 U 盘文件的选中

由于 U 盘中的文件名可能是中文名或长文件名,这给 U 盘文件名的输入带来了不便,为 了便于用户对 U 盘文件进行操作,系统采用光标选中的方式来选择要操作的文件。系统规定: 在对 U 盘文件进行任何操作前需要首先选中该文件。所谓选中,即移动 U 盘文件列表中的光 标,将其置在所要操作的文件名上,即表示选中了该文件。文件夹的选中与此相同。如图 3.3 中所示当前选中的是 P20 文件。

3.3.4 打开 U 盘文件夹

系统支持的 U 盘目录深度为 6 级,在不超过目录深度下的文件夹均可打开。用户可以将 加工程序分类存储到相应文件夹中,便于用户查找和管理程序。要打开某个文件夹,首先要 选中该文件夹,然后按【ENTER】键,即打开该文件夹,同时在 U 盘文件列表中显示该文件 夹中的内容。

假设U盘根目录下有一名为[加工程序]的文件夹,以打开该文件夹为例说明如何进行打 开文件夹的操作:

(1)移动U盘光标,选中[加工程序]文件夹;

(2) 按【ENTER】键,该文件夹的内容即在 U 盘文件列表中显示。

3.3.5 返回上级目录

通过以下操作可以返回U盘当前文件的上级目录:

(1)选中[返回上级];

(2) 按【ENTER】键,即可返回上级目录,若返回成功,U盘路径显示区显示新的路径; (3) 若当前目录已是U盘根目录,则不能再向上返回。

3.3.6 将 U 盘文件存入系统

该功能实现将U盘中的文件存入用户程序存储器。通过下面的例子来说明具体的操作流程,假设U盘根目录下已存在test.nc文件,要将其存入用户程序存储器,且在用户存储器中以P03命名。

(1)进入U盘管理界面(参照3.3.2操作),选中test.nc文件;

(2)按【F3】(存入系统)键,在提示栏显示"将程序复制为"输入框,输入P03后按【ENTER】 键,即开始将U盘文件存入系统;

(3)若操作成功,P03文件会出现在用户程序列表中。

注:

(1)存入系统的文件名必须遵守用户程序命名规则,即以P或N开头,后跟两个数字。(2)存入系统的U盘文件大小不能超过系统规定的用户程序最大值,约40Kbyte。(3)文件夹不能存入系统。

3.3.7 用户程序存储器中的程序存入 U 盘

操作举例说明,假设用户程序目录列表中已存在P03程序,现将其存入U盘根目录,在U 盘中命名为P01。

(1)进入U盘管理界面(参照3.3.2操作);

(2)在U盘管理界面下,按【F1】(存入U盘)键,在显示"请输入文件名"输入框,并有 光标在输入框闪烁,输入P03后按【ENTER】键,在提示栏显示"将程序复制为"输入框,并 有光标在输入框闪烁,输入P01后按【ENTER】键,即开始将用户程序存储器中的P03存入到U 盘根目录的操作;

(3) 若操作成功, P01会出现在经重新排序后U盘文件列表中。

3.3.8 浏览 U 盘文件

在U盘管理界面下可以直接浏览查看U盘文件内容,这样便于用户在对U盘文件进行存储 或删除操作前确定文件是否正确。具体操作流程如下:

(1)进入U盘管理界面(参照3.3.2操作),在U盘管理界面下,选中需要浏览的文件;

(2)按【→】(浏览U文件)键后按F2键即切换至U盘文件浏览界面;

在文件浏览界面下可以进行如下按键操作:

【F1】(▲),【F2】(▼),【F3】(程序首),【F4】(程序尾),查看文件的内容。

(3) 若要退出 U 盘文件浏览,可在按任一主功能键,退出浏览界面,切换至相应主功能 界面;

(4)若要浏览下一个U盘文件,首先要退出U盘文件浏览界面(参见流程3操作)返回到U 盘管理界面,在U盘管理界面下选中要浏览的文件,重复流程2的操作即可。

3.3.9 删除 U 盘文件

当 U 盘剩余空间不足时,可以通过删除 U 盘文件功能删除不用的 U 盘文件。操作流程如下:

1. 进入 U 盘管理界面(参照 3.3.2 操作),进入要删除的文件所在目录(参照 3.3.4 操作),选中要删除的 U 盘文件;

2. 按【→】键,再按【F3】(删除U文件)键,即可删除文件;

3. 若删除成功, 被删除文件名从所在目录中消失, 所在目录文件名列表重新排序显示, 且在状态栏有"删除成功"信息出现。

3.3.10 浏览用户程序存储器中的程序文件

该功能便于用户在向 U 盘存储程序之前浏览查看当前程序是否正确。以浏览用户列表中的 P03 程序为例,具体操作如下:

1. 在U盘管理界面下按【◆】键,再按【F1】(浏览程序)键,弹出"请输入文件名" 输入框,并有光标在后面闪烁;

2. 输入要浏览的文件名如 P0003, 按【ENTER】键, 即切换到文件浏览界面, 并显示 P0003 内容。

3.3.11 U 盘管理界面下循环浏览用户程序列表

当用户程序列表中的程序个数超过一屏(18个)显示范围时,若要查看当前未列出的 用户程序名,可通过此功能进行查看。具体操作如下:

1. 在 U 盘管理界面下按【F3】(文件下页)键,在程序列表框中显示下页的程序名,若 翻到列表尾页,再次按【F3】(文件下页)键则显示第一页程序列表内容;

2. 在U盘管理界面下循环翻页功能只对用户程序列表有效。

3.4 OPERT 主功能

OPERT 主功能提供对系统或机床的各种操作和控制,如自动循环、手动连续进给、进给参数选择、MDI 方式等。该主功能下的各种子功能仍由功能键 F1~F5 选择。

按【MODEL】键进入加工主功能,显示画面如图所示:

图 3.6 位置界面

操作加工界面相关说明:

(1) X(大字符显示的坐标值)则是相对于编程零点的坐标值,即工件坐标;

(2) XP 为刀具相对于机床零点的坐标值,即机床坐标。

(3)操作模式:自动、手动、手轮、点动和回机床零,在屏幕左上角显示。上图中显示操作模式为:手动。

(4) 加工程序名: 自动加工使用的程序。

(5) 主轴实际转速。

(6) 计件, 计时: 动态显示加工工件的数量, 加工耗时。

(7) 编程主轴转速: 自动/MDI 时用户编入的主轴转速。

(8) 实际进给速度:动态显示实际进给速度。

屏幕底行为 F 功能键的各种功能提示;屏幕右侧显示各种状态分别指示机床状态、手动操作时的一些参数值,如手动速度、主轴转速等。

3.4.1 自动操作

自动循环加工启动,对应机床的自动操作方式。

按【F3】键后,在操作模式显示区显示"自动", 再按【打开/存储】键,屏幕第一行 加工程序名显示区内出现光标并闪烁,用户可在此处输入准备运行的程序名,【F1】键用于 修改程序名输入时按错的字符;屏幕中间的程序列表显示用户程序区中已有的程序名、程序 大小、程序属性。

程序名输入无误并按【ENTER】键,说明系统已准备运行该程序,此后,如按【循环启动】键,该程序开始运行。如在循环启动前,按【F3】(起始段号)键,程序名后会出现光标,提示用户输入行号,输入行号后按循环启动,则系统从输入的行号开始执行。例如:输入N0100,再按循环启动键,则系统找到以N0100为行号的第一个程序段开始执行,前面的程序段不执行;如没有则从第一行开始执行,并提示错误。

本系统规定,自动循环下的编程零点,就是系统大坐标显示值为零的点,一切编程轨迹 均以此坐标为基准。编程的坐标系与工件坐标系重合。

例如: 编程为:

G90 G01 X10 F100

而循环开始时系统大坐标为:

X —50.000

那么执行上述程序的结果是: X坐标沿正方向移动60mm(直径量)。

按下【**循环启动**】键后,系统首先对程序进行必要的检查、检错等内部处理,如有错,则出现错误提示,无错便开始顺序执行程序。

注意:(1)自动循环加工的程序名,由【存储/打开程序】调出。

(2) 在自动加工前,可以进入图形模拟或跟踪,具体见3.5节。

3.4.2 手动操作机床

手动操作包括手动连续进给和步进进给二种方式,又称手动、点动操作方式,冷却和主 轴均可手动操作。

1. 手动方式:按"手动"按钮对应的 F 键即进入手动方式,在手动方式下,【X-】、【X+】键表示 X 坐标轴沿其正方向或负方向移动的操作键,按下其中之一,对应的坐标轴便沿相应的方向运动。

2. 点动方式: 与手动方式一样,按"点动"按钮对应的 F 键便可进入点动操作方式,每 按一次坐标进给键,其坐标便沿该键对应的方向移动一个给定的长度。

3. 手动操作参数的设定:只在手动、点动方式时有效。

按【F】键:设定手动或点动方式的坐标移动速度(字母键区的【F】键),按【F】在"进 给"二字后出现光标,此后可输人数字,表示每分钟进给的毫米数,按【ENTER】后有效。

该速度的范围在 1~9999mm / min (0.001mm 脉冲当量时)之间, 若输入有误, 系统自动设 定为 50.000mm / min, 按错数字, 可用【F1】键修改。

按"Uset"键:设置点动步进进给量,只在点动方式有效,用于设置步进量。按【Uset】 键,在光标后输入步进量(0.001~65.5mm)。

按【S】键:设置主轴转速,按【S】键后,在光标处输入数字表示主轴转速,按【ENTER】 后有效。系统输出该转速对应的模拟量。该转速由 P3#参数、P4#参数限定上限。

4. 主轴与冷却: 在手动、手轮、点动方式下, 主轴、冷却均可手工操作。

5. 夹紧/松开功能:在三位开关置到主轴停、进给停档位时,按【内夹/外夹】键,屏幕显示的外圆紧/外圆松或内孔紧/内孔松将发生变换,M10和M11功能的方向也将产生变化。

3.4.3 返回机床零点

机床回零操作:

在 OPERT (加工) 功能下, 按 "F5"键, 操作方式成为返回机床零点方式, 可看见在'操作'二字后出现'回机床零'三个字。按手动进给键 X-▲、X+▼朝 X 轴正方向回零。有关 机械零点的功能, 详见第五章。

3.4.4 手轮(手摇脉冲发生器)

手轮可以控制机床在 X 方向上的直线运动,为适应不同的需要,手轮设置了三个速度挡 (倍率),分别为 X1、X10、X100,速度挡之间可随时切换,最小控制精度等同于系统控制 精度,最大控制速度是脉冲当量的 100 倍。手轮主要用于机床的快速直线移动、对刀等。

手轮操作如下:

- 1. 进入机床操作界面。
- 2. 按"F1"进入手轮操作方式。
- 3. 按"冷却"键选择手轮倍率,同时在屏幕的'操作'提示下显示已选择的倍率。
- 4. 摇动手轮,则机床做响应运动。
- 5. 要退出手轮状态,可按其他任一"F"功能键(F1~F5)。

3.4.5 系统加工状态设置

在"操作加工"主功能的"自动"子功能下,有二种与机床一数控系统有关的状态设置。 1. 单段:按【F2】键来回切换。有效时,"单段"按钮被按下,系统每执行一个程序段, 便停下来等待用户输入,每按一次"循环启动"键,系统向下执行一个程序段,若在等待时 按下"循环取消"键,那么这个循环将被取消,且不能被恢复。

2. 暂停: 与"循环启动"对应, 自动循环可由"循环暂停"键暂停加工。在暂停后按"循 环启动"继续运行, 若按"循环取消"键, 则本次自动加工被取消。

注: 自动加工开始后,不能进入轨迹显示功能。

3.4.6 MDI 操作方式

在"OPERT(操作)"主功能的手动、自动点动、手轮方式下,按字母G、M、S、T,屏幕 下方出现光标,此时可键入一行程序,按【ENTER】键后系统执行该行程序。该段程序不须 输入段号。在自动方式下的可执行程序段均可在 MDI 方式下执行。

3.5 图形显示功能

在OPERT (操作)界面下,按【F3】(自动)进入自动方式,此时按【F5】(图形显示)进入 图形显示方式(联机或模拟)。该功能用于显示刀具在某加工程序控制下,刀尖的运行轨迹。 该功能可以使用户直接观察到编程轨迹的运行过程,同时结合屏幕上显示的坐标值,能直观 地发现程序中的重大错误。屏幕上的图形可同步跟踪刀尖的切削运动,并显示棒料的外形, 操作者可以从屏幕上直接观察到刀尖运动时,回转体的形成过程。模拟状态时,屏幕上显示 刀具的中心轨迹,但机床各坐标轴并不运动,并且各种机床电器的控制功能也无效,它主要 供用户调试程序,当程序无误时可以加工,避免由于编程疏忽引起的故障,甚至事故。

3.5.1 图形显示功能的画面进入顺序

- (1) 按【MODEL】主键进入位置界面;
- (2)按【F3】(自动)键;(3)按【存储/打开】键;
- (4) 输入文件名 P0750;
- (5) 按【ENTER】;
- (6) 按【F5】(图形显示)键后,图形界面如图所示: 显示界面如下:

图形模拟	P19			х	;	20.000
				Y	16	55.765
				Z		3.000
				- 毛坯	[尺寸 6	mm]
				L		0.000
				D		0.000
				d		0.000
				一刀具	「点位」	
				水平	£	290
				垂直	ĩ	175
快速移动	屏幕起点	设定毛坯	模	枞	联	机

图 3.7 图形模拟

图形显示界面各按钮功能:

图形界面各按钮功能:

1. 慢速移动:改变模拟刀具的移动速度,该按钮按下后,按钮变为快速移动。该按钮根据 状态在慢速移动和快速移动之间切换。

2. 屏幕起点:将模拟刀具移动到起始位置。

3. 设定毛坯:用于设置毛坯尺寸。按下此键,再移动光标,可设置或修改毛坯尺寸。在 L 后输入实际毛坯长度,在 D 后输入毛坯外径,在 d 后输入毛坯内径。

4. 模拟:按F此键,使图形模拟时,实际刀具不运动。

5. 联机:按下此键,使图形模拟同时,实际刀具也运动。

按下【→】键后,F功能键上显示【→】、【→】、【▲】、【▼】键,用来移动模拟刀具。

3.5.2 图形模拟步骤

1. 在图形显示界面,按"设定毛坯"对应的F功能键;

2. 依次在 L 后输入毛坯长度,在 D 后输入毛坯外径,在 d 后毛坯内孔 (如没有内孔则输入 0);

3. 在图形显示区右下方有一个竖线, 竖线的上端在此代表刀具刀尖, 用户必须移动竖线 在屏幕上选择一个合适的位置, 这个竖线所停的位置, 应该是当前显示的工件坐标对应的位 置。可用【F2】、【F3】、【F4】、【F5】移动竖线, 移动方向是屏幕上与【F2】~【F5】对应的 箭头方向, 而每按一次 F1 键, 竖线的移动量可以在 1 个象素 / 10 个象素之间切换。如何选 择移动量由 F1 决定, 按【F1】键(慢速移动, 快速移动), 通过【F1】~【F5】可将竖线中 心移至图形显示区的任意位置;

4. 一旦竖线就位,按"循环启动"程序便可开始执行。用竖线表示的刀具依照用户程序 模拟运动。而机床是否运动。则取决于驱动电源是否接通及选择模拟或联机。程序执行完毕, 可按其他主功能键退出图形轨迹显示。模拟结束,可以通过图形判断程序是否正确。如有错 误,按【MODEL】主功能键,回到编辑状态修改程序,程序修改完毕,重新进行图形模拟, 直至正确为止。模拟完毕,只能退出图形轨迹显示。

Ⅳ 系统功能

4.1 参数体系

按下【MODEL】主键进入参数界面,如图所示。参数界面下的主功能包括:刀具参数, 系统参数,位参数,螺距补偿,初始化设置、诊断及坐标偏置等。这些参数对机床的正常运 行和加工品质至关重要。

参数管理				V5.01-1.5
	当前文件	备份一	备份二	
刀具参数	T01	TB1	TB2	
系统参数	S01	SB1	SB2	
位参数	B01	BB1	BB2	
螺距补偿	I01	IB1	IB2	
坐标偏置	C01	CB1	CB2	
刀具参数 系统	参数 位	参数	诊断	► E

图 4.1 参数管理

根据其功能参数分为以下三类:

- 1. 检测类:测试外部输入口状态,主轴转速以及主轴编码器是否正常工作等。
- 2. 系统设置类:系统初始化,设置口令,格式化电子盘等。
- 3. 参数体系:
- (1) 系统参数: P00#~P199#;
- (2) 刀具参数: 24个刀具参数;
- (3) 螺距误差补偿: 160 点 / 轴;
- (4) 位参数: 40个8位参数, 共320个状态。

说明:系统参数共 200 个,从 P00#~P199#,从 P100#开始,以 PA0#表示, P110#以 PB0# 表示,位参数共 40 个,每个位参数共 8 位,每一位用 Babc 表示,其中:

图 4.2

例如: B124: 第12#位参数从左边数第4位; 定时润滑开放。

根据各种参数文件在电子盘中存放方式的不同,系统将参数文件分为三类:当前参数、 备份一、备份二,它们的主要区别有:

1. 当前参数是数控系统正在使用的参数,它的文件名显示在程序管理界面下参数显示 区。它存放在用户程序存储区,电子盘格式化将会删除当前参数文件,而格式化不会影响到 参数文件的备份一和备份二。

2. 用户可以浏览和编辑当前参数,但备份参数只可以浏览。

用户在浏览或编辑参数文件之前,应该确定"参数存储类型"选择的是当前参数或备份 一、备份二中的参数文件,备份文件是不能被编辑的,在编辑备份文件时状态栏会提示"该 文件为备份,不可进行编辑"。备份文件用来备份当前参数文件,如果需要编辑或使用某个 备份文件时,需要把它恢复为当前文件,然后才可以编辑和使用。

用户可以用光标键【F5】(▶)移动参数存储类型光标,来选择要打开的参数文件的存储 类型。

4.2 参数的基本概念

在介绍参数之前,首先介绍一些基本概念。

4.2.1 加减速时间常数

对于机床的坐标轴,其运行速度从零达到所设定的最大速度时所耗用的时间,或从所设 定的最大速度到停止时所耗用的时间。

系统在 G00 快速定位螺纹切削及手动进给时采用直线升降速,在切削加工时及手脉进给 时采用指数升降速.

直线式升降速

图 4.3

采用指数式升降速在切削的程序段间会有过渡弧度(见图)该弧度与进给速度和指数升 降速时间常数有关(39#),减小 39#有助于减小该弧度,如果两段轨迹之间不产生过渡弧度, 可采用快速清角指令 G61, G62 解决(详见 G61, G62 说明)

4.2.2 直线式升降速

数控系统用采样控制法, 每隔 4.096 毫秒对各坐标轴实现一次采样控制, 各轴加减速采 用匀加速控制方法,即每个采样间隔(4.096ms)电机速度(如果运动的话)的变化是恒定值, 它就是系统的加(减)速度。其计算公式为:

$$a = \frac{V_m \times Ts^2}{60 \times Tm} \tag{\vec{x} 4.1)}$$

其中:

Ts: 系统采样时间(4.096ms)

Tm: 加减速时间常数(ms)

Vm: 最大速度(mm/min)

a: 加速度

可通过改变最大速度或改变加减速时间常数实现改变加速度的目的。

最大速度一般用来限定在该运动状态的最大速度,并且与加减速时间常数一起确定加速 度值,而系统的实际运行速度应小于或等于最大速度。

加速度 a 与最大速度 Vm 及时间常数 Tm 的关系如下图:

Vm	ţ	Ļ	_		
Tm	_	—	¥	1	
а	Ť	ţ	↑	Ļ	

图 4.5

(↑,表示增大,'↓'表示减小,'一'表示不变,而当 Tm 与 Vm 同时变化时,则由公式具体确定。

4.2.3 电子齿轮比

调节系统的输出,使得系统的坐标运行值与工作台运动的距离保持一致,而不需刻意为 此调节电机与丝杆的传动比。

电子齿轮由系统参数设定,每轴二个参数称为倍率 MLT 与分率 DVT,对于滚珠丝杆传动 工作台运动时:

$$\frac{MTL}{DVT} = \frac{Pmt \times Gf}{Pcn \times Gd} \tag{\pi 4.2}$$

其中: Pmt: 电机每转脉冲数

其中:步进电机:每转脉冲

伺服电机:编码器线数×编码器倍频数

Pcn: 丝杆螺距 µm

Gf: 电机与丝杆连接传动中从动轮齿数总数

Gd: 电机与丝杆连接传动中主动轮齿数总数

对于直连情况, Gf = Gd = 1

MLT 与 DVT 必须取其最小正整数值。

MLT 与 DVT 的范围为 0~65535,但比值必须在 0.01~100 之间。

4.2.4 参数密码

为防止参数被无意修改,系统设置了密码。首先必须输入密码解锁,然后才能修改参数, 方法如下:

(1) 按【密码】键,在"请输入密码"后显示光标;

(2) 输入密码。该密码与"初始化"功能中的口令一致;

(3) 按【ENTER】键,输入正确,系统清除该行,否则,显示错误。

4.3 系统参数

修改系统参数的操作步骤:

- 1. 按主功能键【MODEL】进入参数画面;
- 2. 按【F2】(系统参数)进入系统参数界面,输入密码;
- 3. 按【F2】~【F5】键移动光标到相应的参数上;
- 4. 按数字键可直接进行重新输入;
- 5. 按回车键【ENTER】输入有效;
- 6. 按"存储"键将参数存入电子盘。

注:

(1) 具体定义见附录二;

(2)按【详细列表】键则把系统参数按列表方式排列。

4.4 位参数

对于很多只有二种选择性的功能,可用位参数设定,每个参数有8位,每位只有0或1 二种状态,可作为某一功能的有效或无效选择,系统共有40个位参数,最多可实现320种 状态的有效与否。

修改位参数的操作步骤:

按键次序【**MODEL**】→ "F3(位参数)";

位参数从 0#到 29#,每个位参数有 8 位,从左到右分别叫做第一位,第二位,……第八位;

为方便起见,每个位参数的某一位用 Babc 表示,例如 B134 表示第 13 号位参数的第四位。 注:具体定义见附录三。

4.5 螺距误差补偿

系统每轴最多可输入 150 个误差补偿点,每轴的补偿点数及两个点之间的间隔由 P 参数的 P52#~P57#决定,超出补偿范围的点系统认为螺距误差为 0,在两个补偿点之间系统认为 螺距误差是线性变化。

1. 进入: 按【MODEL】→再按"F4";

2. 按 "F1~F4"移动光标可选择某个点的误差值,而该点相对于机床坐标系(机床参点)的坐标值在屏幕下方由 XP、YP、ZP、AP 表示;

- 3. 按【↔】键可翻出下页;
- 4. 按"F5"键可选择 X、Y、Z、A 各轴。

4.5.1 螺距误差补偿须注意的问题

1. 必须输入密码后才能修改。

- 2. 输入值为补偿值,即为抵消该误差而须输入的补偿值。
- 3. 各轴螺距误差是否进行补偿由参数的 B016 ~ B018 决定。

4. 动态补偿情况可将 B011 位设为 1, 在操作界面上动态显示各轴运行过程中的补偿 值。

5. 系统必须先回机床零点,才能进行螺距补偿。

6. 回机床零点后,右上角小坐标显示为: XP00000.000 ZP00000.000,要进行补偿, 必须使 XP、ZP 坐标朝负向运动。

7. 根据 X 向、Z 向丝杆长度、丝杠精度、加工工件尺寸确定 X 向、Z 向螺距误差补偿间

隔长度及补偿点数。每轴最多补偿150点(52、53、56、57参数)。

8. 用激光干涉仪测出 X、Z 两个方向从机床零点开始沿负向每隔一定距离(P52#、P56# 参数)的误差。

9. 将测出的误差输入到参数表的螺距误差项中。

10. 将位参数 03#设为: XXXX101 (开放回参考点功能, X 号表示该位无关)。

4.5.2 螺距误差补偿设置举例

例: X 丝杠有效长度为 300MM, 共补偿 100 点, P52#参数=300 / 100=3, P53#参数=100 (≤150)

用激光干涉测出螺距误差:(先回零点,使 XP=0) 沿一X 向走到-3MM 处 (系统显示), 实测走到-2.974, 1#螺距误差为-0.006 沿一X 向走到-6MM 处 (系统显示), 实测走到-6.003, 2#螺距误差为+0.003 沿一X 向走到-9MM 处 (系统显示), 实测走到-9.007, 3#螺距误差为+0.007 实测走到-11.990,4#螺距误差为-0.010 沿—X 向走到-12MM 处 (系统显示), 沿一X向走到-15MM处(系统显示), 实测走到-14.998,5#螺距误差为-0.002 沿一X向走到-18MM处(系统显示), 实测走到-17.991,6#螺距误差为-0.009 沿—X 向走到-21MM 处 (系统显示), 实测走到-21.001,7#螺距误差为+0.001 沿—X 向走到-24MM 处 (系统显示), 实测走到-24.002,8#螺距误差为+0.002 沿一X 向走到-27MM 处(系统显示), 实测走到-27.009,9#螺距误差为+0.009 沿一X 向走到-291MM 处 (系统显示), 实测走到-291.011, 97#螺距误差为+0.011 沿一X 向走到-294MM 处 (系统显示), 实测走到-294.000, 98#螺距误差为0 沿一X 向走到-297MM 处 (系统显示), 实测走到-296.999, 99#螺距误差为-0.001 沿一X向走到-300MM处(系统显示),实测走到-300.007,100#螺距误差为+0.007 最后存盘,CNC系统将在加工时自动进行螺距补偿。

4.5.3 螺距误差补偿 U 盘导入

用激光干涉仪等工具测出的螺距误差数据一般可以输出到电脑,然后按照系统要求的格式处理后可以用 U 盘导入到系统。用仪器得到的误差数据大多是以微米为单位的整数,同时 根据方便的原则,要求如下:

 螺距误差数据文件用 Windows 记事本产生,每轴螺距误差数据的文件名不同,分别为:X 轴为"I01X.TXT",Y 轴为"I01Y.TXT",Z 轴为"I01Z.TXT",A 轴为"I01A.TXT"; 螺距误差数据文件内容如下图:

🗍 无标器	圆-记事本	:				×
文件(E)	编辑(<u>E</u>)	格式(<u>O</u>)	查看(⊻)	帮助(<u>H</u>)		
0 -21 -31 -39 -38 -41 -42 -40 -47 -53 -65						E

图 4.6

(2) 在螺距误差数据文件中每行数据对应系统的螺距补偿参数中的一个参数,依次递增, 每行的数据是一个可带符号的整数;如图上中-21,导入到系统后对应的1号参数为-0.021 操作步骤:

(1)在螺距补偿界面下,按【F1】将页面切换到需要导入的页面如 Y 轴;

(2)将处理完的数据文件,按命名规则命名,然后复制到U盘根目录;

(3) 按"U 盘导入"对应的 F 功能键。

4.6 刀具参数

每把刀的刀具参数有四项,分别是 X Z 向的刀补值,刀尖圆弧半径,刀尖向对于工件的相位编号(1~9)。

关于刀具参数在编程中的作用请见 2.4.3。

4.6.1 刀补操作

(1)按【F1】键,进入刀具参数设置画面,此时,光标在"T01"刀号的参数处闪烁;

(2)此时 F 功能键被重新定义,可按翻页键【上页】、【下页】以及光标键 【 ← 】、【 ↑ 】、 【 → 】、【 ↓ 】将光标移到需要设置的刀号处;

(3)若要输入 X 向值,按【F1】(对刀)后再直接输入试切的工件直径,按【ENTER】后产 生刀补;

(4) 若要输入 Z 向值,先按【ENTER】键,再按【F1】(对刀)键,然后输入试切的工件长度,按【ENTER】后产生刀补;

(5)按"存储"键将输入或修改的参数存盘。

4.6.2 坐标修调

因为各种原因造成刀架或车床的拖板产生微量位移使得刀尖的工件坐标产生误差,此时 使用坐标修调用功能可一修正这一误差。

操作步骤同 4.6.1, 只是在步骤 3、步骤 4 选择【F2】(修调)键。

4.6.3 刀补值的直接输入

刀补值的直接输入一般用于刀补值清除,我们不建议使用直接输入的方法来建立刀补。 输入的刀补值如果是当前使用的刀补,会导致换刀时工件坐标错误,可能导致不可预测的后 果,输入刀补后请确认输入正确,并返回机床零。

操作步骤如下:

(1)进入刀具参数界面;

(2)按【F3】(输入),输入刀补值,按【ENTER】键,再按【存储】键保存参数。

4.7 初始化

在初始化界面下主要实现了以下功能:清内存、格式化、修改密码、恢复参数出厂值、 参数文件的备份和恢复、时间设置和序列号等。

初始化界面的进入步骤:

(1) 按【MODEL】, 切换进入参数界面;

(2)按【F5】(初始化)进入初始化界面。

4.7.1 清内存

如果受外部干扰造成系统紊乱、显示紊乱、数据混乱等系统运行中出现的不正常情况, 应使用清内存操作。它将所有存储单元全部置为0,包含掉电保护区的运行参数,及程序名 表等。因此用户应慎重执行该功能,以防重要参数和程序丢失。

清内存的操作步骤:

(1)进入初始化界面,再按【F1】(清内存),进入清内存界面;

(2)输入正确的密码,按【ENTER】;

(3)系统自动重新启动。

4.7.2 格式化

当出现用户程序错误、文件或文件目录紊乱、参数文件无法保存时,需要对电子盘进行 格式化操作。格式化操作将会删除系统内的所有用户程序和所有除备份参数之外的参数(不 会影响到时间和密码),用户应慎重执行该功能,以防重要程序和当前参数文件的丢失。若 格式化之前,需要保存当前参数文件可参见参数备份操作。

格式化的操作步骤:

(1)进入初始化界面,再按【F2】(格式化),进入格式化界面;

(2)输入正确的密码, 按【ENTER】;

(3)系统开始执行格式化操作。

4.7.3 修改密码

系统添加密码主要是为了防止误操作破坏一些重要参数文件,而使得系统无法正常运行。出厂时系统密码为"XZ0012",用户可以在系统修改密码界面下修改密码。

修改密码的步骤:

(1)进入初始化界面,再按【F3】(修改密码),进入修改密码界面;

(2)在"原密码"输入框中输入正确的密码;

(3)在"新密码"和"确认密码"输入框中输入新的密码,这两次输入的密码要一致;

(4) 输入完成后按【ENTER】(确定)保存新密码;

(5) 密码修改成功时系统会在状态栏中提示"密码修改完成,请记住新密码",如果提示 "密码错误",那么请在原密码输入框中输入正确的密,否则密码将无法修改成功,如果提示"输入的新密码不一致,请重新输入",表示在"新密码"和"确认密码"中输入的两个密码不相同,请确认后重新输入。

4.7.4 出厂值

出厂值界面主要完成以下功能:恢复参数的出厂值、备份参数到备份数据区、从备份数 据区恢复参数,U盘导入,U盘导出等功能;

出厂值界面的进入:

(1)按主功能键【MODEL】,进入参数界面;

(2) 按【F4】(初始化)进入初始化界面;

(3) 按【F4】(出厂值)进入出厂值界面。

4.7.4.1 如何恢复参数的出厂值

恢复参数的出厂值功能就是将指定的参数的系统当前使用的参数恢复成出厂设置的参数,该功能主要在数控系统参数混乱而使系统无法正常工作时使用,参数的出厂值可以保证 系统的正常运行但不一定能符合用户的具体需要,因此用户应慎重执行该功能。为了防止误 操作需要在操作之前先输入密码。

恢复出厂值的步骤:

(1)进入出厂值界面;

(2) 按【密码】键,输入正确的密码,再按【ENTER】;

(3)用光标键【→】或【ENTER】将大光标移至"当前参数"所在的列,以及需要恢复出 厂值的参数所在的行; (4) 按【F1】(出厂值),系统开始执行出厂值操作。

4.7.4.2 如何备份参数

备份参数的主要作用就是保护参数防止数据丢失,参数备份文件不受电子盘格式化的影响,因此建议用户将符合自己操作要求的参数在数控系统中作个备份,可以在参数出错时随时恢复。数控系统为每种参数提供"备份一"和"备份二"两个存储空间。

备份参数的步骤:

(1)进入出厂值界面;

(2) 按【密码】键,输入正确的密码,再按【ENTER】;

(3)用光标键【→】或【ENTER】键将大光标移至"备份一"或"备份二"所在的列,以 及将要备份的参数所在的行;

(4)按【F2】(备份),系统开始执行备份操作。

4.7.4.3 如何将备份参数文件恢复成当前参数文件

恢复参数就是将用户以前备份的数据恢复为当前参数,供数控系统使用,因此如果用户 以前没有作过备份,此操作将是没有意义的。恢复参数操作将会覆盖系统正在使用的参数, 如果该参数没有备份,覆盖系统将无法恢复这个参数,因此用户应慎重执行该功能。建议用 户在恢复参数之前,先浏览将要用于恢复为当前参数的备份数据。

恢复参数的步骤:

(1)进入出厂值界面;

(2) 按【密码】键,输入正确的密码,再按【ENTER】;

(3)用光光标键【→】或【ENTER】键将大光标移至"备份一"或"备份二"所在的列, 以及将要恢复的参数所在的行;

(4)按【F3】(恢复),系统开始执行恢复操作。

4.7.4.4 如何把当前参数导出到 U 盘

数控系统的当前参数是以文件的形式存放在电子盘中,包括一下几个文件:刀具参数、 系统参数、位参数、螺距补偿和坐标偏置,文件名分别是 T01、S01、B01、I01 和 C01。导 出参数是将数控系统中的被选择的当前参数导出到 U 盘根目录,文件名是它在数控系统中的 文件名,"导出文件"操作只能对当前参数使用。用户可以将一套满足需要的参数导出到 U 盘,然后保存到计算机,在系统参数混乱时用来恢复。

导出文件的步骤:

(1)进入出厂值界面;

(2) 按【密码】键,输入正确的密码,再按【ENTER】;

(3)用光标键【→】或【ENTER】将大光标移至"当前参数"所在的列,以及要导出的参数文件所在的行;

(4) 按【F2】(U 盘导出),操作成功后相应的参数文件将被复制到 U 盘的根目录,操作 失败将会提示出现的错误。

4.7.4.5 如何从 U 盘中导入参数文件

U 盘导入参数文件操作先从 U 盘根目录下查找与大光标处文件名相同的文件,找到后再 用 U 盘中的该文件替换相应的当前参数。只能对当前参数进行"导入文件"操作,不能对数 控系统的备份一和备份二进行该操作。用户应该保证要导入的参数是正确的,否则可能导致 数控系统的参数混乱。在使用这些导入的参数进行加工之前,请确认参数是否正确,否则可 能造成刀具、机床、工件损坏及人员受伤。

导入文件的步骤:

(1)进入出厂值界面;

(2) 按【密码】键,输入正确的密码,再按【ENTER】;

(3)用光标键【→】或【ENTER】将大光标移至"当前参数"所在的列,以及要导入的参数文件所在的行;

(4)按【F1】(U 盘导入),操作成功后相应的 U 盘根目录文件将被复制到系统,作为当前参数使用,操作失败将会提示出现的错误。

4.7.5 时间设置

在时间设置界面下,用户可以查看和设置当前的日期和时间,这部分数据不受格式化的 影响,但如果系统是试用版可能无法修改当前时间,而只能浏览。

时间设置的方法和步骤:

(1)进入初始化界面,按【F5】(时间设置),进入时间设置界面;

(2)移动大光标到需要设置的位置,按数字键直接输入,请确认输入的数据是否正确, 否则无法修改成功;

(3)修改完成后,按【存储/打开程序】键,保存修改的数据。

4.8 诊断

诊断界面提供输入口、输出口、编码器、手轮以及主轴转速的检测和监视功能,此功能 在机床调试以及错误判断时,很有用处。按【MODEL】主功能键进入参数界面,再按【F4】 (诊断)可进入诊断界面。

4.8.1 输入口

在诊断界面按【F2】(输入口)进入输入口界面:

参数管理	诊断	>> 输)			V5.01-1.5
01 ZERR	4J3-050	02 ZPSN	4J3-040	03 LIMT	5J2-140
04 LIM-	5J2-060	05 H/L	5J2-130	06 STRT	5J3-030
07 PAUS	5J3-040	08 EMER	5J3-051	09 ZRDY	4J3-120
10 IM10	6J3-040	11 ZRGH	6J3-120	12 IM11	6J3-050
14 XPSN	4J1-040	15 XRDY	4J1-120	16 XERR	4J1-050
17 T03	5J1-020	18 T06	5J1-130	19 T08	5J1-120
20 T01	5J1-110	21 T04	5J1-030	22 T 05	5J1-040
23 T07	5J1-100	24 T02	5J1-050	26 XREF	4J1-110
27 XRGH	6J3-110	28 ZREF	4J3-110	30 3SWO	0
31 3SW1	0	33 ZSEL	6J2-9 0	35 X10	6J2-5 0
36 EXEM	6J2-6 0	38 X100	6J2-130	40 XSEL	6J2-120
报警定义	输入口	1 输	出口 推	響列表	返回

每行显示3组信息,每组信号包含以下信息(以第一组为例):

图 4.8

输入口号和输入端子接口是一一对应的。输入口状态对应的是输入端子接口的输入状

态,和位参数 B04, B05, B06, B07, B28 定义的有效电平没有关系。

有些功能的输入口是可以设置的,例如:X 轴参考点粗定位信号,输入口号在参数 P66 中定义,那么用户可以根据需要自行设置。假设需要将 XJ2-09 设置为 X 轴参考点粗定位输入口,则从诊断界面下找到 XJ2-09 对应的输入口为 19,将参数 P66 设置为 19 即可。

4.8.2 输出口

在诊断界面按【F3】(输出口)进入输出口界面:

参数管理 诊	断>> 输出口	V5.01-1.5
01 M03 8J1-2/6	0 02 M04 8J1-3/8 0	03 M05 8J1-04 0
04 TCW 5J1-06	0 05 TCCW 5J1-07 0	06 M08 5J2-05 0
07 S3 5J2-12	0 08 M78 5J2-04 0	09 M79 5J2-11 0
10 ZTRF 4J3-03	0 11 ZEN 4J3-2/101	12 M10 6J3-03 0
13 M11 6J3-10	0 14 XTRF 4J1-03 0	15 XEN 4J1-2/101
16 S2 5J2-03	0 17 S1 5J2-10 0	
转速主	油编码器 手轮	编码器 0
报警定义 输	入口 输出口 扌	最馨列表 返 回

图 4.9 输出口

4.8.2.1 输出口

每行显示3组信息,每组信号包含一下信息(以第一组为例):

图 4.10 输出口

输出口状态是系统往相应输出端子的输出状态,测试时可通过 M20KXX, M21KXX 来输出 信号并通过对相应端子的测量,检查输出口是否正常。

对于某些可设置的输出口的功能,输出口的设置方法和输入口设置方法相同。

4.8.2.2 主轴转速和主轴编码器

该界面主要检查主轴编码器是否正常以及测试主轴旋转速度是否稳定。当主轴旋转时进入该功能,数控系统显示检测到的主轴转速和每一转内的编码器发出的脉冲数×4,正常 1200线的编码器为4800,可有3-5个脉冲的偏差,但一次多了必然在相邻的上/下次减少, 无积累误差。开始1-3次显示的数据可能不准是正常的。

4.8.2.3 手脉编码器

手脉编码器显示框中显示摇动手脉时系统读到的手脉编码器的反馈数据,用来测试手脉 编码器或编码器接口是否正常。

4.8.3 报警定义

在诊断界面下,按【F1】(报警定义),进入报警定义界面。报警定义功能提供了自定义 报警功能,用户可以最多定义5个自定义报警,错误提示为X1~X5,以区别于通常报警。 自定义报警可以在系统接收到输入口信号后在系统显示,并根据参数报警定义参数决定是否 停止加工。

4.8.3.1 设置步骤:

(1)编辑自定义报警内容文件

报警文件前5行分别对应1~5号自定义报警的报警内容,每个自定义报警系统最多显示 15个汉字,如下图:

🥘 e01.t	xt - 记事本	z					X	J
文件(E)	编辑(<u>E</u>)	格式(0)	查看(⊻)	帮助(<u>H</u>)				
报警1							*	
报警3 报警4 报警5								

图 4.11 使用记事本编写自定义报警内容

编辑完成后,保存文件,文件名为"e01.txt",并将该文件复制到U盘根目录。

(2)将报警文件导入到系统

按参数进入参数界面,在按 F1(报警定义)进入自定义报警界面,按 F1(U 盘导入),将报警文件(e01.txt)导入到系统。

(3)设置相关参数

在自定义报警界面下,除报警内容外,参数还有报警、解除、停止和输出。

作用分别是:

报警:报警输入口号,当相应的输入口输入一个有效电平时,系统产生一个相应的自定 义报警,等于0时,不产生此自定义报警。

解除:解除该自定义报警输入口,当解除报警输入口输入一个有效电平时,该自定义报 警被解除,等于0时,用户要用CAN键来解除报警。

停止:是否停止自动加工,等于0时,不停止加工。

输出:产生自定义报警时向外输出信号的输出口,等于0时不往外输出信号。

参数P119为自定义报警的个数,最大值为5,为0时,则关闭自定义报警功能。参数B04, B05,B06,B07,B28可以设置输入口的有效电平。

4.8.3.2 使用举例

将1号自定义报警设置为"报警1",并让XJ2-22端子输入低电平时产生1号自定义报警,并停止加工,当XJ2-24端子同时输入低电平时,系统清除此自定义报警。

(1)编辑自定义报警内容文件,产生的"e01.txt"文件,并保存到U盘根目录,然后导入报警内容;

(2) 在诊断表中查得XJ2-22输入口为05, XJ2-24输入口为10。先将大光标移至序号为01 的所在的行,在"报警"栏输入05,在"解除"栏中输入10,在"停止"栏中输入,在"输 出"栏中输入; (3)将参数P119号设置为1,参数B044设置0,B051设置为0。

4.8.4 报警列表

在诊断界面,按 F4(报警列表)进入报警列表界面,可以显示当前系统的错误,报警 列表是按照错误产生时的时间先后顺序排列的,最多可以同时显示 10 个错误。

V 系统重要功能详述

5.1 如何提高加工效率

提高加工效率的方法主要有两种:

(1) 缩短或取消程序段之间的升降速过程;

(2)在坐标轴运动中同时进行换刀及启停主轴等过程。

5.1.1 除非工艺需要工件的两段轨迹之间为尖角, 否则尽量不要使用 G61, G62 指 令

如加工的时间常数为100ms时,每条加工程序将节省0.6~0.8。

5.1.2 并行执行 S、T 等指令

系统提供三种并行的外部指令:

- (1) 电动刀架换刀
- (2)主轴启停
- (3) 主轴夹紧松开

打开 20#位参数(置 1)的对应位后实现

例: (位参数 B207 并行主轴启停, B208 并行换刀均置 1)

- N10 M03 S1000 T2
- N20 G00 X150
- N30 G01 X50 F1200 M25
- N40 G00 X100
- N50 T1
- N60 G00 X150 Z450

说明: N10 M03 S1000 T2 执行后,系统启动执行设定的 M03 S1000 与 T2 的换刀动作。 接着(约 0.008 秒后),系统执行 G0 X150 的退刀动作,在运行到 X150 的过程中,系统启动主轴 与换刀。此处一般可节约 3~6 秒的时间。

在 N30 的 M25 指令,系统确认换刀到位后,再执行 N30 中的 G01 X50 F1200,否则等待直 到换刀结束。以防接近工件时撞刀,如有把握,在执行 N30 时不会发生撞刀,M25 指令可不用。

5.1.3 手脉接法(系统支持标准的外接手脉(XJ3) 接口)。

系统支持二种外接手摇脉冲发生器。手脉的形式由位参数 B121, B122 及 P115#系统参数决定。

(1)独立的手脉,由系统键盘选择进给轴和进给倍率: B121=0 B122=0 P115=0。

(2) 独立的手脉和轴选及倍率: B121=1 B122=0 P115#=3。

手脉信号, 倍率和轴选由 XJ3 接入, 具体接线方式见VI系统连接篇中手脉一节。

5.2 加工中修改刀补值

在加工中如发现工件尺寸因刀具磨损等原因造成尺寸变化,可及时修改以进行调整,减 少工件的报废:

(1)执行暂停或单段。

(2)手动停主轴(或用三位开关)。

(3)测量工件尺寸。

(4)进入刀补个修调界面,根据尺寸变化方向修改刀补值。

说明:

(1)当前执行的程序段系统不进行补偿,而是到下一段后才补偿。

(2)修改的刀补可以是当前刀,也可以是其他刀。

(3)对于加工中修改的刀补值,系统即时修改刀补值,并以F500的速度重新调整刀尖位置,与真实尺寸吻合。

(4)注意错误的修改值可能导致撞刀。

5.3 主轴控制

5.3.1 **主轴模拟量输出控制**

(1)系统模拟量输出可选 0~5V 或 0~10V

B113=0: 0~10V

B113=1: 0~5V

主轴转速用S功能实现, S0~S5000。

S0为主轴停,S1~S4为控制主轴多速电机的继电器输出,S5保留,S6~S5000(根据P3#P4#确定主轴的最大转速)为255档模拟量输出。

(2) 主轴恒线速输出

G96: 设定恒线速功能有效

G97: 取消恒线速功能

G96 必须与 S 功能联合使用,G96 发生时,以G96 时刻的主轴转速与当前的 X 坐标共同 计算当时的线速度,以后 X 坐标变化时,主轴模拟量输出随之变化以保持恒线速切削,恒线 速的主轴转速上下限由 P26#,P28#限定。

G96 编程时,X轴的工件坐标必须不为零,否则会因为计算出的线速度为零而出现53 # 报警。

(3) 主轴模拟量的输出定标

当主轴采取机械有级变档结合变频控制时(如主轴采用双速电机或采用机械变档),系统有如下方法自动或手动控制模拟量输出,以达到主轴转速与编程速度一致。

外部高/低速信号输入: H/L

当 B081=0 时,系统检测主轴高低速 H/L 信号的电平决定主轴转速(外部高低速输入信号 H/L 的输入号由 P76#决定),当 P76#定义的输入号的输入无效(高电平),主轴最高速由 P3#确定,S 的编程等于 P3#时,主轴模拟量输出最大。当 P76#定义的输入有效(低电平),则由 P4#决定模拟量输出最大电压的主轴转速。B081=1 时,系统不检测 H/L 信号,而是根据 记忆的 S1~S4 的状态决定采用哪个参数作为与模拟量输出最大时的主轴转速。

	S1	S2	S3	S4
各级转速上限	P3#	P4#	P77#	P78#
	M41	M42	M43	M44

由程序定义的 S1-S4 决定模拟量输出最大时对应的主轴最大转速

也可以用 M41~M44 指定对应的参数作为最大模拟量的转速(见上表)。

当 B081=0 时两档选择是自动选择,但用户必须用外部开关量信号给系统。当 B081=1 时有四档可选,用户必须在程序中用 S1~S4(或 M41~M44)指定与主轴转速的参数号,以保证编程的主轴转速与真实的转速一致。

5.3.2 主轴的 M 功能控制

由 M03、M04、M05、S 功能组成,通过 P 参数与位参数的不同选项可以实现各种控制要求。

(1)M功能的不同选项配合

B012:=0: M03、M04为常态保持输出,由S0或M05停止。

B012: =1: M03、M04 为脉冲输出,由 P13#决定脉冲宽度

M05 只能是脉冲输出,脉冲宽度由 P14#决定。

M03、M04之间直接切换时,如需延时由P11#决定。

如需主轴快速能耗制动,其继电器输出延时由 P12#决定, P12#定义的制动动作发生在 关断 M03, M04 之后。

以上参数均可置为0使该功能无效。

(2) 主轴与 M 功能的关联

B132: =0: S4 无效,

为方便编程操作,系统定义主轴控制的诸多关联选项。

a)B131:决定S功能是否自动执行M03(=0执行,=1不执行)

b) S1~S4: B102: =0:

=0.	☆ 许 値 田 S1~S4	=1.	不允许徒田	$S1 \sim SA$
-0:	九 叶 便 用 51~54	-1:	个儿厅便用	$51 \sim 54$

- =1: S4 有效
- B133:=0:S4由M78输出。 =1:S4由M79输出。(B132=1时)

B134:=0: M05 是关模拟量 =1: M05 是不关模拟量

注意: M02 指令将强制关闭模拟量及冷却液(即强制执行 M05、M09,而不管 B134),如 程序结束后不希望主轴停转,请不要在程序尾使用 M02 指令。

5.3.3 主轴夹紧卡盘(液压卡盘)控制

(1)液压卡盘控制方式有以下几种:

a)程序指令控制 M10 主轴夹紧, M11 主轴松开。

b)外部脚踏开关:分单联开关、双联开关及双向旋钮控制。

c)键盘按钮控制:夹紧,松开。

d) 内夹/外夹切换: 当 B156=1(系统必须连接了三位开关)时,三位开关旋钮选到 主轴停止档,可按面板"内夹/外夹"按钮进行切换; B156=0 时,把主轴倍率调整到 10%,可按面板"内夹/外夹"按钮进行切换。

(2) 控制模式有关的参数选项

P95#: 继电器输出口号,控制夹紧液压电磁阀的继电器。

P96#: 继电器输出口号,控制松开液压电磁阀的继电器。

P97#: 定义外部输入口号,启动夹紧动作。

P98#: 定义外部输入口号,启动松开动作。

P105#: 控制液压夹紧电磁阀的通电时间以防止液压油缸长期通电造成损坏。

P106#: 控制液压松开电磁阀的通电时间以防止液压油缸长期通电造成损坏。

P105#=0 或 P106# =0 时为油缸长期通电方式。

P107#: 主轴夹紧到位输入口号, P107#=0时不检测夹紧到位。

B181: =0: 主轴转动时不允许启动夹紧/松开功能。

- =1: 主轴转动时允许夹紧/松开。
- B182: =0: 单联脚踏开关接通时主轴夹紧,脱开时主轴松开。
 - =1: 单联脚踏开关踩下一次接通时主轴夹紧,另一次接通时主轴松开。

B184: =0:采用单联脚踏开关,一个触点。

=1: 采用双联脚踏开关,两副触点,一个触点踩下主轴夹紧(短信号)。

另一副触点踩下是主轴松开(短信号)。 当采用两位旋钮(一副常开触点)控制时,B182=0,B183=0。

5.3.4 主轴启动状态检测功能

系统设定了两种输入判断,检测主轴启动后主轴是否确定已启动

(1)B141=0: 由外部 I/0口(P94#参数定义)检测是否输入有效决定主轴是否已启动。

(2) B141=1: 检测到主轴转速大于 50 RPM 时系统认为主轴已启动。

(3)B144=0:系统每次启动主轴时不检查主轴启动就绪信号;=1:检查主轴启动就绪。

当检查主轴是否启动时,系统在由 P11#决定的时间内循环扫描 P94#定义的输入口,检 查到信号有效为正常,否则报警。

对于 B141=0, B144=1, 将主轴变频器的就绪输出的常开触点作为主轴就绪信号输入, 可避免开机后变频器的开机延时造成系统未能正常启动主轴的故障。

5.4 外部功能控制

5.4.1 三位开关

三位开关可方便地实现自动加工下进给与主轴的暂停。

注意,在三位开关暂停或主轴停时,系统副面板上的主轴操作均可有效,但一旦三位开 关恢复到程序运行时,系统均恢复自动加工程序中设定的转速与转动方向。

螺纹暂停:只有在 Z 轴回到螺纹循环起点时,才暂停,同时主轴不停止运转。

B152: =1: 三位开关有效,此时任何自动循环的启动必须将三位开关拨到运行位。

P102#: 三位开关程序运行的输入端子号

P103#: 三位开关主轴暂停的输入端子号

5.4.2 系统对进给轴的控制

(1)系统对进给的脉冲输出方式以进给脉冲和方向脉冲输出。

(2)进给轴控制的主要选项。

以下参数置成一时分别开放 Z X 各轴的对应功能,设成 0 时则不开放。

- 1. 电子齿轮: B006~B008
- 2. 螺距补偿: B016~B018
- 3. 反向间隙补偿: B026~B028
- 4. 机械零点: B036~B038
- 5. 各轴反向运行: B086~B088
- 6. 圆坐标显示: B106~B108
- 7. 抱闸控制: B196~B198

说明:

(1) 抱闸有效时, 抱闸由 XJ1 的抱闸脚输出。

(2)上电后,系统检测到伺服就绪信号后须延时一段时间输出抱闸信号(时间由 P104# 定义)。

(3)一旦系统检测到驱动报警,则撤销抱闸。

(4) 圆坐标以 360 度作为坐标显示数值上限。

5.4.3 伺服单元与系统应答逻辑

在上电时,伺服的上电过程与系统的上电过程有严格的先后关系 原则:

(1)系统必须首先上电或者系统与驱动器同时上电

(2)伺服强电电源一般分两组,一组 r, t 为单相 220V,供伺服内部的控制电路使用, 一组 R, S, T 为三相 220V,经过大功率模块逆变控制,为交流伺服电机提供电源,称为主回路。

(3)对于要求很高的场合,建议 R, S, T上电在 r, t之后进行。

系统对伺服的上电过程控制由以下步骤组成。

伺服单元 R, S, T 的上电过程:

(1)系统上电延时,时间由P104#决定,该时间后系统认为伺服的控制电源r,t已上电。
(2)P104#延时结束后,系统输出R,S,T闭合的M功能输出,该M功能口的输出口号由
P99#定义。该输出口可驱动中间继电器带动交流接触器使R,S,T加载到伺服驱动上。

(3)伺服输出就绪就绪信号与系统输出各轴使能信号的先后不同,系统由 B084 决定。

- B084=0:系统先检测各轴的就绪信号有效,然后输出各轴的使能。
- B084=1:系统先输出各轴的使能,然后检测各轴的就绪信号。
- (4)B031=0:任何情况下系统不输出使能。

B031=1: 根据 B084 的状态,系统输出每个轴的使能信号(不可选)。

(5)B096[~]B098 =1: 检测 Z、X 轴的就绪信号; =0: 不检测。

一旦系统检测到各轴就绪信号有效,并已输出使能,同时又无其他严重报警,系统便处 于待命状态,可以正常工作。

5.4.4 系统对进给轴的脉冲输出方式:

最大脉冲频率: 1MHz (对应于1微米分辨率的进给速度为60m/min),脉冲输出波形:

图 5.1

(1)系统保证在换向时方向脉冲的前沿与后沿均覆盖脉冲信号。1/4的脉冲周期。

(2) 脉冲信号为 1/2 占空比。

(3) CP 信号在低振动输出模式下脉冲波动率≤125ns(位参数 B101=0),速度精度为 7.5mm/min。在高精度速度控制方式下(位参数 B101=1)平均速度波动<0.5%。

(4)高转速加工大螺纹螺距时,可设定 B091=1(开放进给柔性处理)改善螺纹加工品质: (5)双脉冲方式(软件版本 V5.0以上有效,仅针对有 USB 接口的数控系统)。

本模式为选件,标配不提供,用户可向公司提出定制后,通过 Internet 访问公司网站 并下载系统软件,再用 USB 接口升级系统软件(或在订货时指明)。

双脉冲方式的波形:

5.4.5 软限位

软限位由系统控制,在工件坐标或机床坐标运动到超过某一范围时发出报警信号并停止 运动,切换到手动模式。 软限位由以下参数模式:

位参数:

B022 =1: 开放软限位功能

 B024
 =0: 软限位必须在返回机械零点后才有效。
 =1: 软限位常有效(不推荐使用)

 B092
 =0: 以机床坐标作为软限位依据
 =1: 以工件坐标为软限位依据

 P 参数:
 =1: 以工件坐标为软限位依据

P60#~P65#分别为 x, y, z 各轴在所选择的坐标系零点正负两方向软限位的极限坐标范围(参数见手册)。

说明:

一旦各轴运动时操过软限位范围,系统立刻降速并停止运行,此时会超过软限位区间一 定距离,该超距离与软限位发生时的速度有关,并且该超越距离与速度和加速度有关。

5.4.6 机械零点开关设置

机械零点又称机床零点或参考点,用于上电时在机床上的固定位置恢复工件坐标系并统 一内部刀具,坐标、保护等重要数据体系。

照顾到早期数控系统的操作习惯,系统除上电必须回零模式外(B033=0),又开放了上 电不需回零模式(B033=1)。

机床零点的信号接入分两种方式:

(1)一个接近开关:每轴采用一个接近开关作为零点信号,简称单信号回零。

(2)初定位开关与伺服电机 Z 信号找零方式,简称双信号回零。

系统推荐采用上电必须回零模式及第二种零点开关接入方式。

回零的操作方式

1. 上电回零

选择"机床零"方式后,手动方向进给键,该轴找零,B192=1时,不必连续按方向进给键。

2. 程序回零

G74: 在上电必须回零模式下,上电后 G74 无效,只能按手动方向键回零

与回零有关的参数

设定基本参数(位参数)

B036~B038=1: 开放有关各轴回零

B034 =0/1: 决定是否恢复工件坐标系

B033 =0: 上电时必须回零才能加工; =1: 上电后无须回零就可以加工。

B116~B118 =0:选择该轴双信号回零;=1:选择该轴单信号回零。

B136~B138 =0: 沿各轴正方向寻找零点信号。=1: 沿各轴负方向寻找零点信号。

B186~B188 =0: 双信号回零时,该轴换向运动寻找电机 Z 脉冲信号。

=1: 双信号回零时, 该轴不换向运动寻找电机 Z 脉冲信号。

5.4.7 换刀过程

系统可处理排刀,电动刀架,液压/伺服驱动的刀架等若干方式,用户由 P5#参数定义 换刀方式:

P5#	0	1	2	3	4	5	6	7	8	9	10
	排刀	电动刀架		4	$2 \sim 10$	为用户	定义	(选件)		

最多可定义 10 种换刀形式,系统标配为 0、1 两种,其他的刀架控制用户须提前订货或 提前说明刀架形式。

系统最多控制 24 把刀

P2#定义刀具数量

与电动刀架,换刀的有关参数如下:

P1#: 刀架夹紧时反转时间。过长可能造成刀架电机发热,过短则刀架可能未夹紧。

P2#: 电动刀架上的刀具数量, P2#=4 时, T05~T08 可作为其它输入口使用。

P5#: 刀架形式的定义。

P47#: 刀架正反转换向之间的延时。一般适用于较大型的刀架。

P79#: 刀架正转最长时间,刀架正转经过 P79#定义的时间,如仍未找到目标刀架,可 认为刀架正转卡住或刀具信号检测不正常,系统将提示 44#报警。

B147 =0: 在换刀结束后再次确认是当前刀号是否是预期的刀号; =1: 不再确认。 对于其他形式的换刀机械控制 P5#=2 或以上,请用户与系统厂家联系取得相关资料。 面板顺序换刀键:

面板上的顺序换刀键:按 P2#定义的刀具数目顺序换刀,如系统未检测到刀号,该功能 无效。若选择排刀(P5#=0),系统顺序调整刀补号及坐标。

5.4.8 机床报警处理

一、限位

由于各坐标轴运动超出了设定范围(超程)而造成的错误报警,一般分为硬件超程(由 机械上限位开关动作引起)和软件超程(超出预期设定的坐标最大范围)

限位发生后,系统执行以下动作过程:

(1)各坐标轴降速到零停止

(2) 切换到手动进给模式、

(3)关主轴,关冷却

(4)提示"错误40"报警

限位发生后,引起限位该轴不能再沿该方向运动,其反向运动允许,以退出限位状态。 数控系统只能定义正向/负向限位,即各轴共同使用一个正方向限位输入,共同使用一 个负方向的输入,一旦某轴的正向(或负向)限位发生后,其它各轴在该方向也不能运动, 直到退出限位为止。

硬件超程的输入有参数定义输入号:正向限位输入号 P72#,负向限位输入号 P73#。

二、驱动报警

(1~3)处理步骤同限位,(4)如 B196~B198 设定了抱闸有效,则撤销抱闸信号,驱动报警 由电机控制信号插座的 XERR, ZERR 定义接入系统。

三、急停报警

急停用于出现紧急情况时迅速切断机床系统的工作状态用。

急停按钮有两付触点,一常开一常闭,常开触点式接入系统内部的输入信号,产生 55 #号报警,正常情况下切断进给与主轴的工作状态并封锁一切操作。

急停处理:

(1~3)处理步骤同限位;

(4)显示"错误55";

(5)死锁键盘,直到急停信号撤销。

四、复位按钮

为软复位,用于当前状态的撤销(比如执行快速定位过程中按复位则停止快移)。

五、外部一般报警

用户可根据外部机械结构需要接入该报警信号,该信号可由 B142 决定是作为报警提示 还是与严重报警一样处理。

B142:=0:报警时仅提示"错误42",不做任何操作。

=1: 处理步骤同限位 (1~3)。

外部一般报警输入信号接入端子由 P74#定义。

六、抱闸控制

B196~B198 定义了 Z, X 轴的抱闸功能开放是否,当某位参数设为1时,对应的轴开放 抱闸功能,抱闸控制信号(通电信号)由 XI1 的抱闸脚输出,它将带动一只继电器,接通抱 闸电源,使抱闸制动失效。

抱闸一旦定义, 它将在系统发出使能或监测到伺服 Ready 信号后延时 P104#定义的时间 后, 输出抱闸信号。

一旦某一轴的驱动报警,系统将关断所有抱闸信号。

5.5 工件坐标系的产生和恢复

系统内部有二级坐标系,机床坐标 XP,YP,ZP,其零点就是机械原点,工件坐标 X,Y,Z(即以大字符显示的坐标),原点在试切对刀时建立并保存在系统的数据体系内。两个坐标的坐标值都表示当前刀具的对刀的刀尖点相对与坐标原点的距离。

机床坐标在返回机械零点时建立,而工件坐标是由试切对刀过程中系统计算出来,以后 可通过返回机械零点自动恢复工件坐标系。对于没有机床零点的机床,只能靠系统的存储器 记忆。因此强烈建议用户采用机械原点装置。

5.5.1 工件坐标系的产生模式

原则上数控机床的坐标系(机床坐标及工件坐标)应该在机床上电时通过返回机械零点 来恢复工件坐标,但在实际操作中由于经济型数控的操作习惯,相当一部分机床未安装机械 零点传感器,因此数控系统有两种模式可选。

(1)上电后必须返回机床零点

上电后只能通过选择"机床零"模式手动按方向进给键,找到机械零点,恢复工件坐标系,然后自动加工,MDI等方式才有效。

(2)上电后无需返回机床零点

依靠保存在掉电保护存储器内的坐标信息等开机后即可操作,工件坐标及机床坐标均与 上次关机前相同,由于关机后电机拖板处于自由状态,或上次关机时因为突然掉电造成电机 过冲,使得系统恢复的坐标与实际位置不符,造成故障。

5.5.2 机床坐标及工件坐标的产生

上电必须回零模式(B033=0)

系统第一次上电时,各种坐标及刀具信息均处于不确定状态,必须经以下顺序产生各种 数据:

(1)刀具装夹: 在刀架(或排刀架上)至少安装一把刀具作为当前刀;

(2)开机上电;

(3)内存清零(采用参数主功能中的清内存功能);

(4)各轴返回机床零点;

(5) 试切对刀,产生当前刀具的工件坐标系;

(6) 其余刀具分别对刀;

(9)关电后再次上电,返回机床零点后,系统恢复当前刀具位于机床零点处的工件坐

标,工件坐标生效。

上电后无需回零模式(B033=1)

仍采用必须回零模式的操作步骤,只是第4条步骤可以省略。

5.5.3 与坐标系有关的参数选项:

对于车床控制:

- B033 =0: 上电后必须返回机械零点
 - =1: 上电后无须返回机械零点
- B034 =0: 根据刀号恢复工件坐标
 - =1: 工件坐标清成零值

对于车床模式且电动刀架(P5#=1)方式,如果在机械零点处系统未检测到有效刀号信号,则工件坐标一律清零。对于排刀,刀号一律设成零号,而上电后刀补号一律设为1,并恢复1#刀的工件坐标。对于其他形式的刀架,用户须指定上电后的刀号产生方式。

上电无须回零方式下,排刀的刀补号由系统记忆产生。

对于铣床系统, 三轴坐标在回零后有二种选项:

- B033 =0: 上电后必须返回机械零点
 - =1: 上电后无须返回机械零点
- B034 =0: P21#参数恢复X轴的工件坐标

P22#参数恢复Y轴的工件坐标

P75#参数恢复Z轴的工件坐标

=1: X Y Z 机械原点处各轴工件坐标清零

5.5.4 加工开始位置设定

为方便操作者将刀具移到某固定位置作为加工的开始点,系统设定了两种方式将刀具移 动到该位置:

G75: 以机床坐标值返回加工开始点。

G76: 以工件坐标值返回加工开始点。

对 G75: 系统参数 P8#, P24#, P9#分别为 X, Y, Z 轴在机床坐标下加工开始店的坐标值。 对 G76: 系统参数 P18#, P22#, P19#分别为 X, Y, Z 轴工件坐标下加工开始点的坐标值。 G75XYZ 或 G76XYZ 的运行结果分别运行到以下坐标:

	Х	Y	Z
G75	P8#	P24#	P9#
G76	P18#	P22#	P19#

5.5.5 刀补修调与刀具偏置

实际刀具在加工中会出现二种情况影响坐标值及加工尺寸,须采取以下手段进行坐标调整

1、刀具微量磨损

采用刀补值修调:微量修调值加进刀补值或从刀补值中减去,取决于位参数 B151。

B151=0: 修调量加进刀补值 =1: 修调量从刀补值中减掉

2、刀尖崩裂

从刀夹中取下刀具重磨或更换,刀尖坐标有较大变化,此时只对该刀重新进行试切对刀 以建立它的刀补值及对应的工件坐标,但这个功能的实现有以下前提:

(1) 上电必须回零模式

上电时如果以这把刀返回机械原点,它必须已经对过刀。

(2) 上电无需回零模式

从上次对完刀到目前重新对刀时,必须从未执行过以下功能之一:

- a)系统内存清零
- b)执行过坐标偏置

c)发生过电机堵转,闷车等现象而重新设定过工件坐标系

当不能确定是否发生以上情况时,强烈建议用户更换其他刀具时对所有刀具重新对刀。 3、刀架整体偏移

伺服电机因堵转,闷车造成坐标整体偏移会造成工件坐标系统被破坏,此时:

(1) 上电必须回零模式

用户只需重新将各轴返回机械零点,工件坐标系自动恢复。

(2) 上电无须回零模式

发现工件尺寸在 X, Z 方向变化若干,可用坐标偏置功能输入 X, Z 方向的变化值,工件 尺寸变化多少便输入多少,工件尺寸增加输入正值,尺寸减少输入负值。

5.7 系统软件升级

华兴数控系统具有通过U盘和串口进行系统升级的功能。在用户现场,无须打开机箱便 可进行升级,升级对系统中的原有参数文件、机床坐标、刀补及机床状态信息不产生影响, 即升级完成后用户不需重新配置参数文件、建立刀补等操作,包括用户开机界面也不受影响。

5.7.1 系统软件升级

5.7.1.1 何时需要升级系统软件

(1)用户自行定制的新功能的更新软件。

- (2)系统增加了新的功能。
- (3)系统软件更新。

5.7.1.2 如何获取升级软件

获取该升级软件有以下几种途径:

(1)由华兴技术服务人员直接提供。

(2) 通过 Email 方式,由南京华兴数控公司提供。

注: WA-OTD 升级软件名称为: SWAOTD

5.7.1.3 如何进入系统升级界面或下载用户图片界面

按硬复位键复位系统(硬复位键位于U盘插口旁,需要打开U盘防护盖才能看到),在 按系统硬复位键或者重新上电启动系统之前按住【RESET】键,直到弹出"请输入密码"提 示为止方可松开。输入密码(密码为GGG),系统将弹出系统升级界面,如图所示:

图 5.3 升级

升级界面介绍:

U盘:按该键选择通过U盘升级

串口:按该键选择通过串口升级

系统软件:按该键选择升级系统软件

开机画面:按该键选择更新用户界面

CHN Font:按该键选择写系统汉字库,此功能在出厂时使用,最终用户请不要使用。

5.7.1.4 如何通过 U 盘进行系统升级

操作流程如下:

(1)获取系统升级软件;

(2)将获取到的升级软件存到 U 盘根目录;

(3)进入系统升级界面;

(4) 在系统升级界面下按 F1 (U 盘) 键,再按 F3 (系统软件) 键,即开始系统升级操作, 并在屏幕下方显示"正在升级",同时显示升级进度,直到界面上出现"升级成功"信息出现,表示系统升级已完成;

(5)重启系统,查看系统能否正常启动,若可以正常启动,则说明系统升级成功。这时可以操作机床进行简单测试,比如进行手动进给操作,换刀等,若测试正常,可以进行试加工操作。测试正常,则可以进行正常加工操作。

5.7.1.5 如何通过串口进行系统升级

操作流程如下:

(1)获取系统升级软件;

(2)进入系统升级界面;

(3)在系统升级界面下按 F2 (串口)键,再按 F3 (系统软件)键,即开始系统升级操作, 并在屏幕下方显示"正在升级",同时显示升级进度,直到界面上出现"升级成功"信息出现,表示系统升级已完成;

(4)重启系统,查看系统能否正常启动,若可以正常启动,则说明系统升级成功。这时可以操作机床进行简单测试,比如进行手动进给操作,换刀等,若测试正常,可以进行试加 工操作。测试正常,则可以进行正常加工操作。

5.7.2 用户开机界面更新

系统提供给用户一定的空间来存放用户开机界面,用户可以通过U盘或串口将编辑好的 图片下载到数控系统,以后系统启动时显示开机界面既为您所更新的图片。系统支持的图片 最大尺寸为 800×480 像素,彩色系统使用 256 色。

5.7.2.1 用户如何编辑自己的开机界面

用户可以使用 Windows 操作系统的画图板工具进行编辑图片,将编辑好的图片存为 256 色,800×480 像素,调色板必须使用标准的 256 色,否则系统显示的颜色会有偏差。

5.7.2.2 如何通过 U 盘更新用户界面

U盘升级开机画面时对文件名的要求: UWAOTD

操作流程如下:

(1)将用于升级的文件存到U盘根目录;

(2)进入系统升级界面;

(3)在系统升级界面下按 F1 (USB)键,再按 F4 (用户界面)键,两个键显示为按下状态,即开始系统升级操作,并弹出下载用户图片过程界面,直到界面上出现"升级成功"信息出现,表示用户图片下载更新己完成;

(4)重启系统,查看界面显示是否正确。

5.7.2.3 如何通过串口更新用户界面

操作流程如下:

(1)进入系统升级界面;

(2)在系统升级界面下按 F2(串口)键,再按 F4(用户界面)键,两个键显示为按下状态,即开始系统升级操作,并弹出下载用户图片过程界面,直到界面上出现"升级成功"信息出现,表示用户图片下载更新己完成;

(3)重启系统,查看界面显示是否正确。

Ⅵ 数控系统连接

6.1 系统组成

6.1.1 数控系统控制单元框图

图 6.1 数控系统控制单元图

6.1.2 一个典型的机床电器方案

由数控系统构成的机床数控体系应包括以下内容:

- (1) CNC 控制单元及附件
- (2)步进电机驱动电源/脉冲式伺服单元
- (3)步进电机/伺服电机
- (4) 机床配电柜

图 6.2 典型机床电器方案

6.1.3 机械尺寸

图 6.3 WA-OTD 安装尺寸图

- 6.1.4 接口定义一览
- 6.1.4.1 前面板(塑料箱盖内)定义

图 6.4 前面板 USB 接口定义

6.1.4.2 后盖板接口定义

图 6.5 后盖板接口定义

6.1.5 **输出信号对照表**

表 6.1 输出端口定义

插座及脚号	脉冲输出	保持输出	取消输出	补充功能	备注
4J1-P19		M20 K19	M21 K19		X 轴伺能,功率输出
XJ2-P14	M75	M20 K4	M21 K4	刀架正转	功率输出
XJ2-P01	M74	M20 K5	M21 K5	刀架反转	功率输出
XJ1-P02	M86	M20 K16	M21 K16	M11	松开输出

插座及脚号	脉冲输出	保持输出	取消输出	补充功能	备注
XJ1-P05	M78	M20 K8	M21 K8	M78	
XJ1-P13	M76	M20 K6	M21 K6	M08	M09 撤消 M08, 功率输出
XJ1-P11	M87	M20 K17	M21 K17	M10	夹紧输出
XJ1-P10	M79	M20 K9	M21 K9	M79	
XJ1-P09	M83	M20 K13	M21 K13		报闸输出
XJ1-P04	M77	M20 K7	M21 K7		
XJ1-P01	M81	M20 K11	M21 K11	S1	S1, S2,S3 互锁
XJ1-P03	M82	M20 K12	M21 K12	S2	S1, S2,S3 互锁
XJ1-P12	M83	M20 K13	M21 K13	S3	S1, S2,S3 互锁
XJ1-P14	M71	M20 K1	M21 K1	M03	M03、M04 互锁,功率输出
XJ1-P07	M72	M20 K2	M21 K2	M04	M03、M04 互锁,功率输出
XJ1-P06	M73	M20 K3	M21 K3	M05	M05 撤消 M03、M04 互锁, 功率输出

功率输出: CNC 内部由功率三极管输出,驱动外部中间继电器。所有外部继电器的电流 总和≤60mA。

6.1.6 输入信号对照表

表 6.2 输入信号对照表

插座及引脚	条件输入	默认功能	备注(默认功能)
4J1-P5	MO1 L16/K16	XERR	X轴报警输入
4J1-P11	M01 L26/K26	XREF	X 轴参考点伺服 Z 脉冲输入
4J3-P5	MO1 L1/K1	ZERR	Z轴报警输入
4J3-P11	MO1 L28/K28	ZREF	Z 轴参考点伺服 Z 脉冲输入
XJ2-P19	MO1 L17/K17	3#刀	3#刀信号输入
XJ2-P7	MO1 L21/K21	4#刀	4#刀信号输入
XJ2-P20	M01 L22/K22	5#刀	5#刀信号输入
XJ2-P6	M01 L24/K24	2#刀	2#刀信号输入
XJ2-P21	M01 L23/K23	7#刀	7#刀信号输入
XJ2-P18	M01 L20/K20	1#刀	1#刀信号输入
XJ2-P9	MO1 L19/K19	8#刀	8#刀信号输入
XJ2-P8	MO1 L18/K18	6#刀	6#刀信号输入

插座及引脚	条件输入	默认功能	备注(默认功能)
XJ2-P24	M01 L10/K10		夹紧输入
XJ2-P11	MO1 L4/K4	LIM-	各轴负限位输入,由73号P参数定义
XJ2-P10	MO1 L11/K11		Z 轴粗定位输入
XJ2-P22	MO1 L5/K5		夹紧到位输入
XJ2-P25	MO1 L12/K12		松开输入
XJ2-P12	MO1 L3/K3	LIM+	各轴正限位输入,由72号P参数定义
XJ2-P23	MO1 L27/K27		X轴粗定位输入
XJ5-P3	MO1 L7/K7		外接启动输入
XJ5-P5	MO1 L8/K8		外接急停输入
XJ5-P7	MO1 L31/K31		三位开关输入1
XJ5-P8	M01 L30/K30		三位开关输入2
XJ3-P5	MO1 L35/K35	$\times 10$	手轮倍率×10 输入
XJ3-P13	MO1 L38/K38	$\times 100$	手轮倍率×100 输入
XJ3-P6	MO1 L36/K36		手轮急停输入
XJ3-P12	MO1 L40/K40	X 轴	手轮 X 轴选输入
XJ3-P9	M01 L33/K33	Z 轴	手轮 Z 轴选输入

注: M01 L_; M01 K_。 L为低电平有效,K为高电平有效 L或K后的数字为输入编号

6.2 强电供电

6.2.1 安装要求

数控系统应处于良好的机械、电环境下工作,用户应保证其有合适的机、电安装,输入、 输出接口应规范连接。

对于数控系统,用户应制作箱体用于安放该系统,系统面板上 6 个Φ4.5 通孔用 M4 螺 钉固定于箱体上。箱体体积应足够大,应考虑系统后面接插件长度及多股线弯曲长度。箱体 应散热良好。

6.2.2 强电供电

数控系统要求供电电压在标称电压的±10%范围内。建议采用 150VA 的隔离变压器,如 图 6.7 所示:

图 6.7 强电供电

注:本文提到的变压器输出电压都是空载电压,其容量不能低于规定的值。
在电气安装中接地很重要,合理接地可使数控系统运行更稳定可靠并防止漏电事故发 生。数控系统外部都有接地点,使用时须将此点可靠地与大地相连。做到:

(1)保证整个机床电器系统必须接到一个主接地点上并合理接大地。

(2)与 CNC 系统进行通讯的电子设备其信号地必须连至该设备的接地点,同时该点必须与机床系统的主接地点良好连接,连接线缆的截面积不小于 2.5mm²。

(3)信号电缆需有屏蔽层。

(4)严禁用交流零线(三相电的中线)作为接地线 PE。

6.2.4 强电安装中注意事项

数控系统必须与机床强电部分连接才能控制整个机床的各种动作。为保证系统可靠工作,机床强电部分所有感性负载均应加装相应的灭弧装置。建议如下(如图 6.8 所示):

(1)交流接触器线圈,采用单相灭弧器并联于接触器线圈两端;

(2)直流继电器线圈,并联二极管续流。

(a) 直流继电器线圈(b) 交流继电器线圈图 6.8 灭弧装置

交流电动机:根据电动机是单相还是三相选用单相/三相灭弧器,不得用分立的电阻、 电容自制吸收回路。RC 必须装到开关或接触器的负载端,典型接法如图 6.9 所示:

图 6.9

6.3 数控系统内部连接

6.3.1 **输入、输出示意图**

6.3.1.1 输入接口电路示意图

6.3.1.2 输出电路示意图

6.4 数控系统信号接接口定义

6.4.1 **数控系统外部连接**

和该 CNC 控制单元有关的各部件如图 6.12 所示连接。

图 6.12 数控系统外部连接

6.4.2 输入/输出接线

6.4.2.1 刀架接口

系统的刀架接口可与常州宏达数控设备厂或常州亚兴数控设备厂制造的 15T 型刀架直接连接,最多可控制八工位刀架,当用六工位刀架时,P21 和 P9 两根线可不接,用四工位刀架时,P20、P8、P21 和 P9 四根线可不接。见下图:

注意:

(1)若用户自制电动刀架控制电路,刀架正转和刀架反转接触器(或继电器)必须互锁。

(2)数控系统安装完毕后第一次与电动刀架联调时,若系统发出换刀指令而刀架没有动作,此时应立即切断三相电源、复位数控系统,重新调整输入到刀架电机的三相电相序。 6.4.2.2 其它输入口

(1)无源器件输入(如行程开关)

(2)有源器件输入(如接触开关、霍尔元件等)

图 6.15

6.4.2.4 接口排列及定义

(1)S、M功能,系统输出为DB15孔,用户用DB15针焊线。

~ ~ ~ ~					
管脚	功能定义	管脚	功能定义		
01	M80	09	M82		
02	S2	10	M79		
03	M81	11	S1		
04	S3	12	M77		
05	刹车	13	M08		
06	M05	14	M03		
07	M04	15	24V		
08	24V				

说明:所有输出为单功率点输出(OC门),限制电流为60mA,外接感性负载(如直流继电器等)需加续流二极管。

(2)刀架口,刀架口输出为DB25孔,与之相连用DB25针。

表 6.4

管脚	功能定义	管脚	功能定义
01	刀架反转	14	刀架正转
02	24V	15	24V
03		16	DA 信号(0-10V)
04	地	17	地
05	地	18	1#刀

06	2#刀	19	3#刀
07	4#刀	20	5#刀
08	6#刀	21	7#刀
09	8#刀	22	夹紧到位
10	Z轴粗定位	23	X 轴粗定位
11	X 方向负限位	24	夹紧输入
12	X 方向正限位	25	松开输入
13	地		

模拟信号(DA)输出 0~10V 模拟电压,接变频器。模拟地与信号地在系统内互连。该 线必须单独用一芯屏蔽线,地线为屏蔽层。系统出厂设为 0~+10V,它与触点信号配合可 控制变频器正转、反转及变速。要求外设(变频器)吸收电流<5mA。该接口与变频器连接 图如图 6.19 所示:

图 6.19

该接口与华兴主轴伺服连接: 工作于速度模式如图 6.20 所示:

图 6.20 (3)外接手脉接口为"DB25 孔",与之相连用"DB25"针。

管脚	功能定义	管脚	功能定义
01		09	Z 轴
02		10	WHB+
03	WHB-	11	WHA+
04	WHA-	12	X 轴
05	X10	13	X100
06	急停	14	
07	5V	15	
08	地		

适配满足以下条件的手轮(也叫手脉):

(1)工作电压: 5V

(2)每转脉冲数:100

(3)输出信号:两路差分输出,即A+、A-和B+、B-

手轮连接必须用屏蔽线,且尽可能用双绞屏蔽线,两根双绞线接一路差分信号,可按下 图制作:

图 6.22

(4)编码器口

系统编码器为 "DB9 孔" 式插座, 与之相接的插头应为 "DB9 针", 系统仅适配满足以下 条件的编码器:

工作电压: 5V

每转脉冲数: 700-2400

输出信号: 三路差分输出, 即 A+、A-、B+、B-、Z+、Z-

编码器接口定义如下:

≠	c	c
衣	ь.	6

管脚	功能定义	管脚	功能定义
01	5V 电源	06	B-
02	B+	07	A–
03	A+	08	Z-
04	Z+	09	地
05	地		

同编码器连接必须用屏蔽线,且尽可能用双绞屏蔽线。两根双绞线接一路差分信号,可 按下图制作:

图 6.24

6.5 电机接口 4J1、4J3

电机信号接口 4J1、4J3 是 'DB15 针' 插座, 插头应为 'DB15 孔', 分别输出 X、Z 轴电 机驱动信号。接口定义:(以 X 轴说明, Z 轴定义将 X 分别换成 Z)。

图 6.25

管脚	功能定义	管脚	功能定义			
01	地	09	地			
02		10	XEN			
03		11	XREF			
04		12				
05	XERR	13	XCP+			
06	XCP-	14	XCW+			
07	XCW-	15	24V			
08	+5V					

表 6.7

电机信号接口适用于三相步进驱动器或数字式交流伺服单元。输出控制信号的形式为: CP 脉冲与 CW 方向信号。CP 以正脉冲输出,每一脉冲对应电机进给一步。CW 高电平控制电 机正转,低电平则电机反转。脉冲信号为 1/2 占空比,方向信号在换向时,超前脉冲信号 1/4 占空比。

图 6.26

电机信号口与我公司三相混合式驱动器连接如图 6.27 所示:

图 6.27 电机信号口与我公司三相混合式驱动器连接图 电机信号口与我公司交流伺服驱动器连接如图 6.28 所示:

图 6.28 电机信号口与我公司交流伺服驱动器连接图

说明:凡用屏蔽层连接两边+5V 或 0V 地端子时,不得再用屏蔽层内的芯线连接+5V 或 0V 地。

有关电机控制的其他信号,以X轴为例:

P10 XEN: 继电器功率点输出,伺服使能信号,通知伺服可以上电工作。

P5: XERR: 输入,当伺服单元因某种原因出错或无法工作时,回馈 CNC 该信号。

P11: XREF: 伺服单元回零(亦即机床回参考点)信号也可将电机编码器的 Z 信号接到 CNC 的 XREF 端子上,由 CNC 直接检测电机的 Z 脉冲,决定机床零点,建议厂家用此方法回参考点。

6.6 外接启动急停暂停接口 XJ5

该接口型号为'DB9孔',与之相连的插头应为'DB9针'。定义如下:

表 6.8

管脚	功能定义	管脚	功能定义
01	地	06	地
02	地	07	三位开关1
03	启动	08	三位开关2
04		09	急停
05	急停		

如下图所示:

图 6.30

附录一 出错报警

出错号与错误内容提示:

- 出错号 出错内容
 - 01 G04 定义的时间错
 - 02 未定义 K 参数
 - 03 G24 子程序返回错,转移加工与子程序调用混乱
 - 04 G31 放大后数据溢出
 - 05 倒角参数错
 - 06 刀具号出错或开机时刀补号错
 - 07 无此 G、M 功能
 - 08 转移加工(包括子程序调用)嵌套错
 - 09 螺旋线参数错
 - 10 程序行首字母错(行必须以N打头)
 - 11 整圆或半圆不得 R 编程
 - 12 对刀计算刀补时未用 XSAV, ZSAV 记忆坐标
 - 13 数据格式错,如座标后面的数值,刀具参数表中与刀号(如 T01)对应的刀补数值,P参数中的数值,要求小数点前四位数字,小数点后三位。
 - 14 转移加工未找到结束段号或 X U /Z W 同时出现
 - 15 一行内字符太多或出现非法字符
 - 16 刀补错。
 - 17 刀补时刀补平面错
 - 18 G35 进给方向无法确定/主轴模拟量出错
 - 19 建立刀补时未使用 G01
 - 20 同一段程序中 M00, M02, M30 等混用
 - 21 G20调用的不是子程序/C刀补后加工园弧半径为0
 - 22 宏程序格式或执行错
 - 23 螺距太大或太小或螺纹中缺 Z、K
 - 24 循环加工的目标段号错或未找到
 - 25 伺服驱动未就绪错误
 - 26 转移加工不应出现在最后一行,应加上 M02
 - 27 圆弧中缺参数或刀补坐标与补偿平面不符
 - 28 未定义
 - 29 刀补轨迹长度为0
 - 30 加工中不能操作此功能
 - 31 RS232 通讯时出错
 - 32 文件未找到或文件出错
 - 33 未定义
 - 34 加工数据存放空间已满
 - 35 未定义
 - 36 未定义

- 37 未定义
- 38 未定义
- 39 G、M 等功能号后面的数据错
- 40 限位
- 41 驱动报警
- 42 一般报警
- 43 加工中改刀补须暂停,可改位参数 B228=1
- 44 刀架反转时间过长、无刀位信号
- 45 文件名定义错误,或进行输入输出时通讯出错
- 46 未定义
- 47 加工时累计刀补修调已超过2毫米!
- 48 文件内部地址错,该文件无法使用
- 49 文件显示字符错
- 50 圆弧起点与终点不符
- 51 整圆不能用 R 编程
- 52 启动加工时三位开关未处在启动位置
- 53 任意段起动时,未找到对应段号或恒线速切削的线速度为零
- 54 坐标轴电机准停未实现
- 55 急停报警
- 56 每转进给时进给速度为零
- 57 RS232 通讯时内存不足
- 58 DNC 内存太小
- 59 主轴启动错误(未收到外部主轴启动完成信号)
- 60 刨床冲程信号错
- 61 主轴刹车时不得启动
- 62 未定义
- 63 未定义
- 64 未定义
- 65 未定义
- 66 开机后未返回机械零点或回零时未检测到刀号
- 67 机械零点信号错。
- 68 未检测到主轴夹紧就绪信号
- 69 未定义
- 70 主轴准停偏移角度参数错
- 71 开机时键盘有键压下或启动键未弹起,可能误启动。
- 72 螺纹加速度为 0/20#参数错
- 73 螺纹长度太短无法加工(可提高Z向加速度)
- 74 螺纹加工时主轴转速不稳/或内部数据格式错.
- 75 加工螺纹时没有检测到编码器信号/Z向加速度太大
- 76 未定义
- 77 未定义
- 78 园弧插补出错
- 79 未定义
- 80 无此 I / 0 口

- 81 未定义
- 82 已达到最大加工件数,或146#参数错
- 83 非法加工功能
- 84 电子盘文件读写错
- 85 电子盘文件写入错误
- 86 电子盘读出错误
- 87 串行通讯错误
- 88 232 通讯输入时错
- 89 232 通讯输入时错
- 90 错误 90: 电池电压低, 更换电池
- 91 未定义
- 92 读 U 盘错, 请重新插入 U 盘, 或按 RESET 取消
- 93 USB 口错误
- 94 伺服轴无法使能
- 95 加工中不能使用 U 盘
- 96 未定义
- 97 C刀补轨迹无交点
- 98 试用期设置错
- 99 试用期过期

附录二 系统参数

参数号	范围	出厂值	取值范围
00	车床 G00 时间常数 (ms)	150	$50 \sim 1000$
01	刀架反转锁紧时间设定(秒)	0.8	0.1~10
02	机床的刀具数目(把)	4	1~12
03	主轴第1档转速上限(rpm)(变频器模拟量输出用)	3000	100~8000
04	主轴第2档转速上限(rpm)(变频器模拟量输出用)	1000	100~8000
05	=0 排刀换刀;=1 电动刀架换刀;2-10 其他形式刀架	0	0~10
06	X 轴反向间隙 (mm)	0	0~1.0
07	Z 轴反向间隙 (mm)	0	0~1.0
08	X 轴对刀点相对于机械零点的坐标(mm)	0	$0\!\sim\!\pm99999$
09	Z 轴对刀点相对于机械零点的坐标(mm)	0	$0\!\sim\!\pm99999$
10	手动快速速度(mm/min)	5000	0~15000
11	主轴换向延时(秒)	0	0~10
12	主轴制动延时(秒)	0	0~10
13	主轴启动延时(秒)	0	0~10
14	M05 继电器脉冲输出延时(秒)	0	0~10
15	继电器脉冲输出延时(M71~M85)(秒)	1.0	0~10
16	螺纹 X 向旋进、旋出速度(mm/min 详见 G86 说明)	5000	0~10000
17	开机画面,0:显示版本号1:厂商开机画面2:操作画面	0	0~2
18	X轴对刀点相对于工件坐标的设定值(mm)	0	$0\!\sim\!\pm99999$
19	Z轴对刀点相对于工件坐标的设定值(mm)	0	$0\!\sim\!\pm999999$
20	主轴编码器每相每转脉冲数	1200	$700{\sim}4800$
21	车床 X 轴 G00 的时间常数	150	$50 \sim 1000$
22	待定	0	0
23	主轴转速波动的百分比,低于该值时,才能加工螺纹	15	$5 \sim 20$
24	待定	0	0
25	螺纹加工时最后一刀光刀量, =0: 不光刀(mm)	0	$0{\sim}65$
26	恒线速转速上限 (RPM)	1000	$1\!\sim\!5000$
27	程序编辑时自动生成段号的增量 0~99, =0 时,不产生段号	10	0~100
28	恒线速切削时主轴转速下限 (RPM)	100	$1\!\sim\!5000$
29	开机时液晶屏亮度值(=0时系统恢复上次关机时的亮度)	12	0~32
30	GOO 时 X 向速度 mm/min	6000	$500{\sim}60000$
31	待定	6000	$500{\sim}60000$
32	GOO 时 Z 向速度 mm/min	6000	$500{\sim}60000$
33	X 向电子齿轮倍率	1	1~1000
34	X 向电子齿轮分率	2	1~1000
35	待定	1	1~1000
36	待定	1	1~1000

37	Z 向电子齿轮倍率	1	1~1000
38	Z 向电子齿轮分率	1	1~1000
39	切削运动时各轴时间常数(毫秒)	150	$50 \sim 1000$
40	螺纹加工时 Z 轴时间常数(毫秒)	200	$50 \sim 1000$
41	切削时速度上限(mm/min)	6000	200~15000
42	G00 快速时速度下限 (mm/min)	500	500~15000
43	返回参考点时寻找零信号的低速(mm/min)	50	1~500
44	限位降速时间常数(毫秒)	200	50~1000
45	螺纹切削时 Z 向速度上限 (mm/min)	5000	2000-15000
46	输入信号去抖动次数	12	3~30
47	电动刀架正/反转之间的延时(秒)	0.05	0.0~10
48	间隙补偿的速度上限(时间常数同 39#)(mm/min)	2000	1000-10000
49	螺纹加工时 X 向旋进旋出尾退的时间常数(毫秒)	100	50~1000
50	待定	0	0~1.0
51	手轮运动的各轴时间常数(毫秒)	150	60~1000
52	X 轴螺距误差补偿间隔长度(mm)	0	0~60
53	X轴螺距误差补偿点数	0	0~160
54	待定	0	0~60
55	待定	0	0~160
56	Z 轴螺距误差补偿间隔长度(mm)	0	0~60
57	Z 轴螺距误差补偿点数	0	0~160
58	圆弧插补的轮廓误差限制(mm)(一般取 0.002)	0.002	0.001-0.01
59	螺纹加工时 X 向旋进、退尾速度上限(mm/min)	5000	100~15000
60	X 轴从参考点开始正向软限位坐标(mm)	0	0~99999
61	X 轴从参考点开始负向软限位坐标(mm)	0	0~-99999
62	待定	0	0
63	待定	0	0
64	Z 轴从参考点开始正向软限位坐标(mm)	0	0~99999
65	Z 轴从参考点开始负向软限位坐标(mm)	0	$0 \sim -999999$
66	X轴参考点粗定位信号的输入端子编号	27	1~40
67	待定	0	1~40
68	Z 轴参考点粗定位信号的输入端子编号	11	1~40
69	G35 输入口号	26	1~40
70	待定	0	1~40
71	Z 轴参考点精定位信号输入口号	28	1~40
72	正向限位输入端子编号	3	1~40
73	负向限位输入端子编号	4	1~40
74	外部一般性报警输入端子信号	0	1~40
75	返回参考点精确定位的低速(X Z 轴)	15	0~15000
76	主轴高 / 低速输入端子编号	11	1~40
77	主轴第3档转速上限(rpm)(变频器模拟量输出用)	1000	100~8000
78	主轴第4档转速上限(rpm)(变频器模拟量输出用)	1000	100~8000
79	刀架正转时间上限(秒 刀架正转超时系统发出 44#报警)	8	1~8

80	位置环常数 KI (0~50)	0	
81	位置环常数 KP(60~100)	80	
82	位置环常数 KD(0~50)	0	
83	刚性攻丝时,主轴换向延时(秒)	0	$0{\sim}65$
84	自定螺纹牙尖角 I, 单边切削螺纹时用(见 G86 功能)	0	
85	自定螺纹牙尖角 II, 单边切削螺纹时用(见 G86 功能)	0	
86	各轴回机床零快速速度,为零时各轴回零由130#~133#设定	6000	0~15000
87	刚性攻丝时,每毫米补偿量(微米)	0	0~15
88	螺纹 X 向切入工件时以 G01 进刀的速度(mm/min)	6000	1000-6000
89	进给轴准停(G09)等待时间(毫秒)	20.000	0~65
90	X轴驱动报警输入口号	16	1~40
91	待定	0	1~40
92	Z 轴驱动报警输入口号	1	1~40
93	外部循环启动开关输入口号	30	1~40
94	主轴启动就绪输入口号	0	1~40
95	主轴夹紧电磁阀输出口号	17	$1 \sim 24$
96	主轴松开电磁阀输出口号	16	$1 \sim 24$
97	主轴夹紧脚踏开关输入口号	10	1~40
98	主轴松开脚踏开关输入口号	12	1~40
99	伺服开高压主回路输出口号	0	$1 \sim 24$
100	G83 排屑延时(秒)	0	$0{\sim}65$
101	开伺服高压到输出伺服使能延时(秒)	0	$0{\sim}65$
102	三位开关循环启动位输入口号	0	0~40
103	三位开关主轴停输入口号	0	0~40
104	输出伺服使能到开伺服电机抱闸延时(秒)	0	0~65
105	主轴液压夹紧油缸通电时间(秒)	0	0~65
106	主轴液压松开油缸通电时间(秒)	0	0~65
107	主轴液压夹紧到位信号输入口号	5	1~40
108	检测主轴液压夹紧就绪时间(秒)	0	0~65
109	定时润滑输出口号	7	1~24
110	定时润滑间隔时间(秒)	0	0~99999
111	定时润滑开启时间(秒)	0	0~65
112	外部循环暂停开关输入口号	0	1~40
113	上电时开伺服 RST 强电上电继电器延时(秒)	0	0~65
114	待定	0	0
115	手脉模式选择,=0:副面板手脉;=2:外挂手脉	0	0~5
116	刨床每冲程进给量(B177=1时有效)	0	$0\!\sim\!\pm99999$
117	尾架进按钮输入口号,=0时无尾架外部按钮	0	1~40
118	尾架退按钮输入口号,=0时单按钮进退	0	1~40
119	自定义外部报警数(为0时不开放)	0	0~5
120	操作加工默认显示模式	0	0~2
121	尾架进输出口号	8	$1 \sim 24$
122	尾架退输出口号	9	$1 \sim 24$

123	刨床刨头开关(B177=1时有效)	0	1~40
124	刨床刨尾开关(B177=1 时有效)	15	1~40
125	跳步选择开关输入口号	0	1~40
126	待定	0	0
127	待定	0	0
128	螺纹 X Z 退刀的时间常数	100	
129	程序加工时预读段数(最小200段)	200	$200 \sim 500$
130	86#=0 时,X 轴回参考点速度	0	0~60000
131	待定	0	0
132	86#=0 时, Z 轴回参考点速度	0	0~60000
133	待定	0	0
134	待定	0	0~24
135	待定	0	0
141	主轴夹紧到位后启动压力检测延时	0	0
142	手脉限速	3000	
143	主轴模拟量变化延时	0	0
144	主轴液压夹紧到位信号输入口号(夹内控)	0	0
140	加工计件数设定,加工计件到设定值后,系统报警停止加工	0	
140	=0 时无限制		
147	M01 检测时间, 1 秒最小, 0: 无穷	0	0

附录三 位参数

	B001	l	B002	B003	B004		B006	B007	B008
E	8001:	=1:	半径编和	日 王	=0: 直径结	编程			
E	8002 :	=1:	铣床界面	缸功能	=0: 车床;	界面功能			
E	8003 :	=1:	程序运行	亍结束时不	自动插入	M05、M09			
		=0:	程序运行	 	动插入 MO	5、M09			
E	8004 :	=1:	在车床边	运行模式下	,开放第	三轴			
		=0:	不开放贫	 育三轴					
E	8006:	=1:	Z 轴开放	x 电子齿轮	功能 =0	: Z 轴不开	F放电子齿	轮功能	
E	8007:	=1:	Y 轴开放	x电子齿轮	功能 =0	: Y轴不F	F放电子齿	轮功能	
E	8008:	=1:	X 轴开放	x 电子齿轮	功能 =0	: X轴不开	F放电子齿	轮功能	
С	0# 出,	厂设	置 10000	111					

01#

B011	L	B012	B013	B014		B016	B017	B018				
B011:	=1:	显示动态	\$ 螺距误差	补偿值,	其值分别じ	く XH、 ZH 表	表示					
B012:	=1:	=1: M03, M04 为脉冲输出										
	=0:	MO3, MO	4 长信号辅	〕 出								
B013:	=1:	MO5 关 S	1~S4									
	=0:	M05 不关	₹S1~S4									
B014:	=1:	攻丝结束	 長后恢复主	轴转速								
	=0:	攻丝结束	 長后不恢复	原主轴旋	向							
B016:	=1:	Z 轴开放	(螺距误差	补偿功能								
B017:	=1:	Y 轴开放	(螺距误差	补偿功能								
B018:	=1:	X 轴开放	(螺距误差	补偿功能								
01#出厂	1#出厂值为 0000000											

	B021	L	B022	B023	B024		B026	B027	B028	
В	021:	=1: 在操作界面上动态显示反向间隙补偿情况, 以 XK、ZK 表示								
В	B022: =1: 开放软限位功能									
В	023 :	=0:	G92 将相	团坐标置。	成与与绝对	寸坐标相同				
В	024 :	=1:	软限位え	E须回参考	点有效					
		=0:	软限位业	必须回参考	点后有效					
В	026 :	=1:	Z 轴开放	反向间隙	补偿					
В	027 :	=1:	Y 轴开放	(反向间隙)	补偿					
В	028 :	=1:	X 轴开放	反向间隙	补偿					
0)2#出厂值为 00000111									

L		B033	B034			B036	B037	B038			
=1:	开机自树	脸通过后,	CNC 输出约	合伺用	服驱动	器的 ENAB	LE 信号 (舱	虫点输出)			
=0:	开机自检通过后,CNC 不向伺服驱动器输出 ENABLE 信号(触点输出)										
B033: =0: 系统上电后必须返回参考点(机床零点)自动循环才有效											
=1: 系统上电后无须返回参考点(机床零点)自动循环才有效											
=0:	返回机床	末参考点后	恢复当前	刀具	的工件	坐标(必	须 REF=0 孑	有效时)			
=1:	返回机床	末参考点后	工件坐标	清零	0						
=1:	Z 轴回参	考点功能	开放 =	0: Z	如回	参考点功能	能不开放				
=1:	Y轴回参	考点功能	开放 =	0: Y	1 轴回	参考点功能	能不开放				
=1:	X轴回参	考点功能	开放 =	0: X	(轴回	参考点功能	能不开放				
3#出厂值为 10110111											
	=1: =0: =1: =1: =1: =1: =1: =1: (值头	=1:开机自相 =0:开机自相 =0:系统上申 =1:系统上申 =0:返回机反 =1:又轴回参 =1:又轴回参 =1:X轴回参 =1:X轴回参 面1:101101	B033 =1:开机自检通过后, =0:开机自检通过后, =0:系统上电后必须返 =1:系统上电后必须返 =1:系统上电后无须返 =0:返回机床参考点后 =1:返回机床参考点后 =1:X轴回参考点功能 =1:X轴回参考点功能 =1:X轴回参考点功能 =1:X轴回参考点功能	B033 B034 =1: 开机自检通过后, CNC 输出结 =0: 开机自检通过后, CNC 不向化 =0: 系统上电后必须返回参考点 =1: 系统上电后无须返回参考点 =0: 返回机床参考点后恢复当前 =1: 返回机床参考点后恢复当前 =1: 返回机床参考点后下数 =1: 又轴回参考点功能开放 =1: Y轴回参考点功能开放 =1: X轴回参考点功能开放 =1: X轴回参考点功能开放	B033 B034 =1: 开机自检通过后, CNC 输出给伺服 =0: 开机自检通过后, CNC 不向伺服 =0: 系统上电后必须返回参考点(机 =1: 系统上电后无须返回参考点(机 =0: 返回机床参考点后恢复当前刀具 =1: 返回机床参考点后下体复当前刀具 =1: 返回机床参考点后下体复当前刀具 =1: 又轴回参考点功能开放 =1: Y轴回参考点功能开放 =1: X轴回参考点功能开放 =1: X轴回参考点功能开放 =1: X轴回参考点功能开放 =1: X轴回参考点功能开放	B033 B034 =1: 开机自检通过后, CNC 输出给伺服驱动 =0: 开机自检通过后, CNC 输出给伺服驱动器 =0: 系统上电后必须返回参考点(机床零点 =1: 系统上电后无须返回参考点(机床零点 =1: 系统上电后无须返回参考点(机床零点 =1: 返回机床参考点后恢复当前刀具的工件 =1: 返回机床参考点后下恢复当前刀具的工件 =1: Z轴回参考点功能开放 =1: Y轴回参考点功能开放 =1: X轴回参考点功能开放 =1: X轴回参考点功能开放 =1: X轴回参考点功能开放 =1: X轴回参考点功能开放 =1: X轴回参考点功能开放	B033 B034 B036 =1:开机自检通过后,CNC 输出给伺服驱动器的 ENAB =0:开机自检通过后,CNC 输出给伺服驱动器输出 ENAB =0:系统上电后必须返回参考点(机床零点)自动循 =1:系统上电后无须返回参考点(机床零点)自动循 =0:返回机床参考点后恢复当前刀具的工件坐标(必 =1:返回机床参考点后下恢复当前刀具的工件坐标(必 =1:又轴回参考点功能开放 =1:Y轴回参考点功能开放 =1:X轴回参考点功能开放 =0:X轴回参考点功能 =1:X轴回参考点功能	B033 B034 B036 B037 =1: 开机自检通过后,CNC 输出给伺服驱动器的 ENABLE 信号(触 =0: 开机自检通过后,CNC 不向伺服驱动器输出 ENABLE 信号(触 =0: 系统上电后必须返回参考点(机床零点)自动循环才有效 =1: 系统上电后无须返回参考点(机床零点)自动循环才有效 =0: 返回机床参考点后恢复当前刀具的工件坐标(必须 REF=0 7 =1: 返回机床参考点后工件坐标清零。 =1: Z轴回参考点功能开放 =0: Z轴回参考点功能不开放 =1: Y轴回参考点功能开放 =0: Y轴回参考点功能不开放 =1: X轴回参考点功能开放 =0: X轴回参考点功能不开放			

注:参数 4#, 5#, 6#, 7#及 28#为通用 I/0 口输入时选择有效电平,每一位的意义根据输入口号参提示或在诊断界面内查找其定义,插座位置及输入状态。

04#

	B041	B042		B044	B045	B046		B048
В	6041: =1:	8号输入	口 (EMER) 高	岛电平有效	; =0	• 低电平	有效	
В	6042: =1:	7 号输入	口 (STRT) 高	哥电平有效	; =0	• 低电平	有效	
В	6044: =1:	5号输入	口(夹紧到	位)高电平	有效; =0	• 低电平	有效	
В	6045: =1:	4号输入	口(LIM-)高	哥电平有效	; =0	• 低电平	有效	
В	6046: =1:	3号输入	口(LIMT)高	哥电平有效	; =0	• 低电平	有效	
В	6048: =1:	1号输入	口 (ZERR) 高	高电平有效	; =0	• 低电平	有效	
0	4#出厂值	为 100000)					

05#

	B051				B055	B056	B057	
В	B051: =1:	16 号输入	口(XERR)	高电平有效	友; =	0: 低电平	有效	
В	8055: =1:	12 号输入	、口(松开辅	ስ入)高电∃	平有效; =	0: 低电平	有效	
В	8056: =1:	11 号输入	、口(ZRGH)	高电平有效	友; =	0: 低电平	有效	
В	8057: =1:	10 号输入	、口(夹紧辅	ስ入)高电∃	平有效; =	0; 低电平	有效	
0)5#出厂值	为 1000000	00					

	B061		B062	B063	B064	B065	B066	B067	B068
E	3061 : =	=1:	24 号输入	、口 (T02) 高	高电平有效	; =0: 低	电平有效		
E	3062 : =	=1:	23 号输入	、口(TO7)高	哥电平有效	; =0: 低	电平有效		
E	3063 : =	=1:	22 号输入	、口(T05)高	哥电平有效	; =0:低	电平有效		
E	3064 : =	=1:	21 号输入	、口 (T04) 高	哥电平有效	; =0:低	电平有效		
E	3065 : =	=1:	20 号输入	、口(TO1)高	哥电平有效	; =0: 低	电平有效		
E	3066: =	=1:	19 号输入	、口 (T08) 高	哥电平有效	; =0:低	电平有效		
E	3067 : =	=1:	18 号输入	、口(T06)高	哥电平有效	; =0: 低	电平有效		
E	3068: =	=1:	17 号输入	、口 (TO3) 高	高电平有效	; =0:低	电平有效		

	B072	B073		B075	B076	B077	
B072: =1:	31 号输入	、口(3SW1)	高电平有效	(; =0:	低电平有效		
B073: =1:	30 号输入	、口(3SWO)	高电平有效	t; =0:	低电平有效		
B075: =1:	28 号输入	、口(ZREF)	高电平有效	t; =0:	低电平有效		
B076: =1:	27 号输入	、口(XRGH)	高电平有效	t; =0:	低电平有效		
B077: =1:	26 号输入	、口(XREF)	高电平有效	t; =0:	低电平有效		
07#出厂值	为 000000	00					

	B08	31			B084		B086	B087	B088	
ł	3081 :	=1:	主轴 M 功	能4档转i	速输出,自	∃ M41-44 送	も择4档速	度,适用	于变频器加	14档
			机械档,	4 档速度由	3#、4#、	77#、78#	参数决定			
		=0:	选择主轴	高低速信号	号,适用于	主轴变频器	器加高低速	机械变换。	,并有高低	速信
			号输入系	统,由主轴	由高低档信	[号决定采	用P参数的	3#或4#作为	」模拟量上	限
ł	B084:	=0:	上电后等	待伺服就约	者后再输出	目伺服使能	信号			
		=1:	上电后输	出伺服使能	能信号再等	等待伺服就	绪信号			
ł	B086:	=1:	Z 向电机	运动反向	=0: Z	向电机运动	力正向			
ł	B087:	=1:	Y 向电机	运动反向	=0: Y	向电机运动	力正向			
ł	B088:	=1:	X 向电机	运动反向	=0: X	向电机运动	力正向			
(08#出)	「值	为 0000000	00						

09#

B091	B092	B093	B094	B095	B096	B097	B098					
B091: =1:	开放螺纹	开放螺纹加工的柔性处理										
=0:	不开放	开放										
B092: =1:	软限位以	工件坐标准	央定									
=0:	软限位以	机床坐标	央定									
B093: =1:	M28 由编	码器定位主	三轴									
B094: =1:	G35 按编	程值重置组	阿坐标	=0:不至	变							
B095: =1:	M01 暂停	时启动无效	Ż									
B096: =1:	上电时,	向伺服输出	H ENABLE /	信号,主	牟检测 Z 向	READY 信号						
B097: =1:	上电时,	向伺服输出	H ENABLE /	信号,主	⊧检测 Υ 向	READY 信号						
B096: =1:	上电时,	向伺服输出	出 ENABLE /	信号,主	⊧检测 X 向	READY 信号						
09#出厂值;	为 0000010	01										

	· ·								
	B10	1		B103	B104	B105	B106	B107	B108
F	3101 :	=0:	: 选择进约	合时低振动	方式				
		=1:	选择速度	度高精度方	式				
F	3103 :	=1:	· N715 邮》	箱,手动惊	中速键保持				
		=0:	:释放无效	汝					
F	3104 :	=1 :	: 旋转轴家	就近运动					

	=0:	旋转轴按符号运动
B105:	=1:	G91 增量值限定到小于 360 度
	=0:	G91 增量值按编程值
B106:	=1:	Z 向以圆周表示,0~360°
	=0:	Z 向以长度表示
B107:	=1:	Y向以圆周表示,0~360°
	=0:	Y向以长度表示
B108:	=1:	X 向以圆周表示, 0~360°
	=0:	X向以长度表示
10#出厂	值为	J 01000000

	B111	B112	B113	B114		B116	B117	B118
E	B111: =1:	专机控制	(功能根据	定)。				
	=0:	通用系统	控制					
E	B112: =1:	严重报警	时输出 M7	9(三色灯	「报警)			
E	B113: =1:	主轴模拟	量选择 0~	~5V				
	=0:	主轴模拟	量选择 0~	~10V				
E	B114: =1:	电动刀架	输出口的	刀架正转/	′刀架反转反	反转信号对	调	
E	B116: =1:	Z 向回参	考点时一个	、开关, 日	医下时粗定的	立,释放时	精定位	
	=0:	Z向返回	参考点二个	、开关,粗	1精分开			
E	B117: =1:	Y 向回参	考点时一个	、开关, 日	医下时粗定的	立,释放时	精定位	
	=0:	Y向返回	参考点二个	、开关,粗	1精分开			
F	B118: =1:	X 向回参	考点时一个	、开关,日	医下时粗定位	立,释放时	精定位	
	=0:	X向返回	参考点二个	、开关,粗	1精分开			
1	[1#出厂值]	为 000000	00					

12#

В	121	B122	B123	B124	B125	B126	B127	B128				
B121	: =1:	115#=2 时	15#=2 时,手脉的轴选及倍率由外部控制									
B122	2: =0:	115#参数	15#参数选择手脉									
	=1:	三位开关	位开关选择手脉									
B123	B: =0:	中文界面	文界面									
	=1:	英文界面										
B123	B: =0:	点动键定	动键定主轴点动方向									
	=1:	点动键启	动主轴点动	动								
B125	5 : =1:	串行录入	或 DNC 传轴	渝时文件り	、%开头							
	=0:	无%开头										
B126	6: =0:	恢复	=1: G9	97 不恢复權	莫拟量							
B127	7: =0:	主轴模拟	量输出 0~	~5V或0~	10V.							
	=1:	主轴模拟	Ξ轴模拟量输出-10V~10V 输出									
B128	B: =1:	M10/M11	10/M11 检测主轴编码器停止									
	=0:	不检测										

12#出厂值为 00010000

						r				
	B1:	31	B132	B133	B134	B135	B136	B137	B138	
F	3131	=0:	主轴S编	程,含有日	MO3 有效					
=1: 主轴 S 编程, 不含有 MO3 有效										
F	B132 =0:不开放 S4 功能(只有 S1、S2、S3)									
		=1:	开放 S4 耳	力能。						
H	3133	=0:	定义 M78	为 S4 输出	(只在 B1	32=1 时有法	效)			
		=1:	定义 M79	为 S4 输出	I					
F	3134 :	=0:	M05 关模	拟量输出。						
		=1:	M05 不关	模拟量输出	1					
F	3135 :	=1:	系统面板	启动按键表	无效					
H	3136 :	=0:	Z 轴正向	回零						
		=1:	Z 轴负向	回零						
F	3137 :	=0:	Y 轴正向	回零						
		=1:	Y 轴负向	回零						
F	3138 :	=0:	X 轴正向	回零						
		=1:	X 轴负向	回零						
]	13#出	厂值	为 100000(00						
1	14#									

	L' 1 II									
	B14	41	B142	B143	B144	B145	B146	B147	B148	
E	3141 :	=0:	检查主轴	就绪信号轴	俞入					
		=1:	主轴转速	大于 50RP	M 为主轴I	作就绪				
E	3142 :	=0:	一般报警	不停自动	加工					
		=1:	一般报警	停止自动	加工					
H	3143 :	=1:	Y轴作为	主轴位置/	速度模式有	肓效时,MO	5发M29(†	切换到位置	【模式)	
		=0:	Y轴作为	J主轴位置	/速度模式	有效时,M	105 不发 M2	29(保持速	ē度模式)	
F	B144: M03, M04 指令启动主轴后检查主轴是否启动正常									
	B144: M03, M04 指令启动王轴后检查王轴是否启动正常 =1: 检查主轴启动正常									
		=0:	不检查主	轴启动正常	常					
F	3145 :	=1:	: 车床开放	女Y 轴且 Y	轴工作在法	速度模式。				
		=0:	: Y 轴为正	E常进给轴	0					
F	3146 :	=1:	主轴停 M	05 撤销位当	置模式。					
		=0:	不撤销							
H	3147 :	=0:	电动刀架	换刀时,纟	结束后再确	认刀号				
		=1:	换刀完成	后不再确i	认刀号					

- B148: 内部参数, 必须设为0
- 14#出厂值 00000000

15#

	B151	B152	B153	B154	B155	B156	B157	B158
E	B151: =0:	相同						

=1: 刀补修调方向与实际尺寸方向相反

B152: =1: 系统的三位开关接入有效 =0: 关闭

位参数

B153: =1: 手脉试运行时速度恒定

- B154: 特种刀架的刀号效验方式(须指定 P5#=2~10 之一)
 - =1: 使用相反校验。
 - =0: 对特殊刀架检测刀号时使用正常奇偶效验
- B155: =0: 开键盘蜂鸣器
 - =1: 关键盘蜂鸣器
- B156: =1: 驱动报警后撤销伺服高压继电器输出
 - =0: 不撤销
- B157: =1: 驱动报警后关闭驱动使能信号
 - =0: 驱动报警后不关闭驱动使能信号
- B158: =1: 各轴各方向限位独自分开模式

15#出厂值 10000000

16#

键盘 RESET 键为软复位时功能选项,待升级。选1为无效(软件版本 V5.1 以上有效), 当按下 Reset 键时会撤消以下动作

		B162	B163			B167	B168
ł	8162: =1:	RESET 键	执行 M21 K	17			
ł	B163: =1:	RESET 键	执行 M21 K	16			
ł	3164: =1:	RESET 键	执行 M21 K	.9			
ł	B165: =1:	RESET 键	执行 M21 K	.8			
ł	B166: =1:	RESET 键	执行 M21 K	.7			
ł	B167: =0:	RESET 键	亭冷却,=1	:不停冷却			
ł	B168: =0:	RESET 键	停主轴,=1	:不停主轴			
]	16#出厂值	0000000					

17#: 专机类别选项:

B171		B175	B176	B177	B178

B171: =1:三位开关暂停位置时,程序结束不关主轴

B175: =1:不显示刀号刀补号

B176: =1:刨床 G00 按信号停顿

- B177: =1:刨床模式
- B178: =1:急停时开抱闸
- 17 出厂值 00000000

	B181	B182	B183	B184	B185	B186	B187	B188
B	181: =1:	自动加工	响应主轴	夹紧松开命	j令			
	=0:	不响应						
B	182: =0:	单联脚踏	开关两路	长信号				
	=1:	单联脚踏	开关一路统	短信号输入				
B	183: =0:	水刀乙轴	电机用开关	关启停控制	J			
	=1:	水刀Z轴	接步进电构	汎				
B	184: =0:	单联开关	=1: 选	择双联脚	踏开关			

B19	91	B192	B193	B194	B195	B196	B197	B198					
B191:	=1:	主轴启动	主轴启动前检查主轴夹紧到位信号										
	=0:	不检测	不检测										
B192:	=1:	开放回零	开放回零模式下按方向进给键后该轴执行自动回零的功能										
B193:	=0:	系统检测	主轴夹紧症	就绪信号									
	=1:	系统记忆	主轴夹紧	犬态									
B194:	=0:	定时润滑	关闭										
	=1:	定时润滑	定时润滑启动										
B195:	=0:	开机后润	滑计时										
	=1:	加工时润	滑计时										
B196:	=0:	Z轴电机	未使用抱闻	J									
	=1:	Z 轴电机I	的抱闸功能	步开放									
B197:	=0:	Y轴电机	未使用抱闻	IJ									
	=1:	Y 轴电机I	Y轴电机的抱闸功能开放										
B198:	=0:	X轴电机	X 轴电机未使用抱闸										
	=1:	X 轴电机I	的抱闸功能	步开放									

19#出厂值 11100000

201							
B201	B202	B203	B204	B205	B206	B207	B208
B201: =1	:主轴 S1~	S4 关模拟:	垦				
=0	:不关						
B202: =1	:S1~S4 编	码输出					
=0	:S1~S4 单	点输出					
B203: =1	: 开放运动	中检测主动	轴夹紧口斩	入状态			
=0	:不开放						
B204: =1	: 开放三色	灯功能	=0:关闭				
B205: =1	: 按 CAN 键	清除报警	输出 =0	:关闭			
B206: =1	: 主轴夹紧	/松开过程	星中执行后线	继加工程序	孝 =0:不	开放	
B207: =1	: 主轴功能	运行时继	续向下执行	「程序			
=0	: 等待主轴	功能执行	完毕				
B208: =1	: 电动刀架	换刀过程	中运行后继	继程序			
=0	: 等待换刀	结束					
	+ 00000000						

20#出厂值 00000000

B211	B212	B213	B215	B216	B217	B218

B211:=1:上电时开一次润滑
B212:=1:上电时设定主轴夹紧为夹内孔状态
B212:=1:主轴夹紧时随时检测夹紧压力有效
B214:=1:上电显示主轴夹紧状态

=0:上电显示主轴夹紧状态
=0:上电显示主轴松开状态

B215:=1:X手动进给方向按斜导轨车床后置刀架
B216:=1:每次加工开始计时清零
B217:=1:外接手动进给按键有效
B218:=1:每次上电不清除计件计时;=0清除
21#出厂值 00010000

22#

			B224		B226	B227	B228			
B224: =1:	程序段间	程序段间停顿								
=0:	程序段连	续过渡								
B226: =1:	开放 G27	开放 G27 计件功能								
B227: =1:	227: =1: 未记忆坐标,不得输入刀补									
B228: =1:	228: =1: 加工中修改刀补,无须暂停									
22#出厂值	22#出厂值 00000011									

28#

B28	81		B283		B285	B286		B288
B281:	=1:	40 号输入口(XSEL)高电平有效						
	=0:	: 低电平有效						
B283:	=1:	38 号输入	、口 (*100)	高电平有效	 牧			
	=0:	低电平有	效					
B285:	=1:	 36 号输入口(外部急停)高电平有效 						
	=0:	低电平有	效					
B286:	=1:	35 号输入	、口 (*10) 高	哥电平有效				
	=0:	低电平有	效					
B288:	=1:	33 号输入	、口(ZSEL)	高电平有效	 牧			
	=0:	低电平有	效					
28#出	厂值	00000000						

29#

	B291					B297	
В	B291:=1: 自定义报警时 Z 轴自动返回参考点						

B297:=1:使用 U-Key 作为密码输入

- =0: 从键盘输入密码
- 29#出厂值 00000000

南京华兴数控技术有限公司

服务热线: 4008606997

- 地 址:南京江宁经济技术开发区东善桥工业集中区
- 电话: (025) 87170996 87170997 87170998
- 传 真: (025) 52627632
- 网 址: Http://www.wxcnc.com

Email:njwxcnc@163.com