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Abstract. Inference in probabilistic logic languages such as ProbLog,
an extension of Prolog with probabilistic facts, is often based on a reduc-
tion to a propositional formula in DNF. Calculating the probability of
such a formula involves the disjoint-sum-problem, which is computation-
ally hard. In this work we introduce a new approximation method for
ProbLog inference which exploits the DNF to focus sampling. While this
DNF sampling technique has been applied to a variety of tasks before, to
the best of our knowledge it has not been used for inference in probabilis-
tic logic systems. The paper also presents an experimental comparison
with another sampling based inference method previously introduced for
ProbLog.

1 Introduction

In the past few years, a multitude of formalisms combining probabilistic rea-
soning with logics, databases or logic programming has been developed, see for
instance [1,2] for overviews. To use such formalisms in statistical relational learn-
ing, efficient inference algorithms are crucial, as learning requires evaluating large
numbers of queries. ProbLog [3] is a simple extension of Prolog defining the suc-
cess probability of a query in terms of random subprograms. Efficient inference
algorithms for ProbLog have been implemented on top of the YAP-Prolog sys-
tem [4]. ProbLog has been motivated by and applied to link mining in large
collections of uncertain biological data, and its inference methods have been
shown to increase the scalability of exact inference for probabilistic logic systems
that do not rely on additional simplifying assumptions. However, as inference in
such systems is computationally hard, approximation techniques are needed for
complex queries. While [4] introduced a sampling based inference technique for
ProbLog which directly exploits the distribution over subprograms defined by a
ProbLog program, in this paper, we follow a more query-centered approach. We
introduce DNF Sampling, a new approximate inference technique for ProbLog
based on the sampling scheme of [5], where in a first phase, as in ProbLog’s
exact inference, a Boolean formula in disjunctive normal form representing all
proofs of the query is constructed. Samples are then drawn from this formula,
thereby focussing on the subspace relevant for the current task. We experimen-
tally compare both approaches in the context of biological networks, showing
that Program Sampling has a better convergence than DNF Sampling.
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The paper is organised as follows: We start by reviewing ProbLog and its
key inference methods in Section 2. Section 3 introduces our new approximate
inference method, and Section 4 reports on experiments comparing the different
methods. After discussing related work in Section 5, we conclude in Section 6.

2 ProbLog

ProbLog is a probabilistic extension of Prolog inspired by typical machine learn-
ing applications. It is developed as a simple but powerful probabilistic logic pro-
gramming language, and used for mining large biological networks (where nodes
represent genes, proteins, and so on), with probability labels on their edges.
As these tasks are computationally hard, the efficiency in processing complex
queries is very important. For this reason, ProbLog is build on top of the state-
of-the-art YAP-Prolog system. YAP is a high performance Prolog system, based
on the Warren Abstract Machine (WAM) with different optimisations, which
make it a suitable host for ProbLog.

ProbLog is closely related to other probabilistic logic systems such as PHA [6],
PRISM [7], and ICL [8]. However, PRISM and PHA impose additional assump-
tions to simplify probability calculation, and the ICL implementation ailog2 does
not scale to larger problems. ProbLog’s implementation is targeted at overcom-
ing these limitations.

The syntax of a ProbLog program T is similar to that of a Prolog one:
it consists of facts and relations between them, but in the case of ProbLog a
label is attached to some of the facts. That is, the program can be split into
a set of labelled facts, where each pi :: fi defines a fact fi with probability of
occurrence pi, and a Prolog program using those facts, which encodes background
knowledge (BK). We denote the set of all fi (without probability label) by LT .
Probabilistic facts correspond to mutually independent random variables (RVs),
which together define a probability distribution over all ground logic programs
L ⊆ LT :

P (L|T ) =
∏

fi∈L
pi

∏
fi∈LT \L

(1− pi). (1)

We use the term possible world to denote the least Herbrand model of such a
subprogram L together with the background knowledge BK and, by slight abuse
of notation, use L to refer to both the set of sampled facts and the corresponding
world.

Figure 1 shows a typical example of a probabilistic graph encoded in ProbLog.
One can query the probability that a path exists between two nodes in the graph.
As it can be noticed from the graph of Figure 1, there are several possible paths
between two nodes. For example between nodes b and f , we have two possible
paths: b → e → f and b → d → f . In ProbLog, querying for the probability of
path(b, f) means asking for the probability that a randomly selected subgraph
contains a path from b to f . Such subgraphs can contain the edges of the path
b → e → f or those of the path b → d → f , but also all of them or even many
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0.40 :: edge(a,b). 0.55 :: edge(a,c).

0.80 :: edge(b,e). 0.20 :: edge(b,d).

0.40 :: edge(c,d). 0.30 :: edge(e,f).

0.50 :: edge(d,f). 0.60 :: edge(d,g).

0.70 :: edge(f,h). 0.70 :: edge(g,h).

path(X, Y) :- edge(X, Y).

path(X, Y) :- edge(X, Z), path(Z, Y).

(a) Probabilistic graph (b) ProbLog program

Fig. 1. An example of a probabilistic graph and the corresponding ProbLog program.

more. The success probability Ps(q|T ) of a query q can now be defined as follows:

Ps(q|T ) =
∑
L⊆LT

P (q|L) · P (L|T ) (2)

where P (q|L) is 1 if there is a substitution θ such that qθ is entailed by the
union of L and the background knowledge (L ∪ BK |= qθ), and 0 otherwise.
Equation (2) states that the success probability of the query path(b, f) can
be calculated by summing the probabilities of all subgraphs which include at
least one path connecting nodes b and f . As the number of subprograms to
be considered is exponential in the number of probabilistic facts, this approach
quickly becomes infeasible with increasing problem size. The ProbLog system
therefore uses a different approach, which will be discussed in Section 2.1.

A second inference task in ProbLog is the identification of the best proof
or explanation of a query. An explanation, also called proof here, is a set of
probabilistic facts α ∈ LT which satisfies the following properties [9]:

1. it is sufficient to account for q, i.e. BK ∪ α |= q,
2. it is not ruled out by the BK, i.e. BK ∪ α is consistent,
3. there is no β ⊂ α such that 1 and 2 hold for β.

In Equation (2), the sum goes over those subprograms that contain some
proof of the query. When considering a specific explanation, this is further re-
stricted to those subprograms containing all facts of that explanation. Therefore
the probability of an explanation α is given by the following formula:

P (α|T ) =
∑

α⊆L⊆LT

P (L|T ) =
∏
fi∈α

pi. (3)

As there may exist many explanations α for a query q, the one with the highest
probability is used to define the explanation probability of q:

Px(q|T ) = maxα∈E(q) P (α|T ) = maxα∈E(q)

∏
ci∈α

pi, (4)

where E(q) is the set of all explanations for query q.



For our example, both probabilities as given in Equations (2) and (4) are
easily computed even by hand: the success probability is Ps(path(b, f)|T1) =
0.316 (note that it is sufficient to consider the graph restricted to nodes b, e, d
and f when listing subprograms for this query), and the explanation probability
is max(0.8 · 0.3, 0.2 · 0.5) = max(0.24, 0.1) = 0.24, but for complex problems this
could consume large amounts of time and memory. ProbLog therefore follows
different strategies to obtain success probabilities, which we will briefly discuss
next.

2.1 Exact Inference

As iterating over possible subprograms as done in Equation (2) is infeasible
for most programs, ProbLog’s exact inference instead employs a reduction to
propositional formula in disjunctive normal form (DNF). As stated earlier, prob-
abilistic facts can be seen as RVs, implying that a proof can be represented as
a conjunction of such facts. The set of all proofs can then be represented as
a disjunction, producing a DNF formula. The success probability then corre-
sponds to the probability of this formula being true. In our example we obtain
the formula (e(b, e) ∧ e(e, f)) ∨ (e(b, d) ∧ e(d, f)) where e/2 denotes edge. Each
proof’s probability is calculated as the product of the probabilities of its facts,
cf. Equation (3). Following the simple logic of conjunction and disjunction we
could infer that the summation of all proofs’ probabilities will produce the final
result. However, this is only true under specific conditions, namely if each possi-
ble world permits at most one proof of the query. PRISM requires that programs
respect these conditions, which means that proofs have to be mutually exclusive
(w.r.t. occurrence in possible worlds). In our example, these conditions are not
met: we would obtain 0.34, while the correct value is 0.316. One way to deal
with this problem is to consider the conjunctions in the DNF sequentially, and
to replace each proof or conjunction αi by its conjunction with the negation of
all the proofs after it, that is, by αi ∧

∧
j≥i ¬αj . In this way, each possible world

permits at most one such extended proof. Note however that the resulting for-
mula needs further manipulation to be transformed into a sum of products which
can be used for easy calculation. For the previous example this will produce:

Ps(path(b, f)|T ) =P ((e(b, e) ∧ e(e, f)) ∨ (e(b, d) ∧ e(d, f))|T )

=P ((e(b, e) ∧ e(e, f)) ∧ ¬(e(b, d) ∧ e(d, f))) + P (e(b, d) ∧ e(d, f))

=0.8 · 0.3 · (1− (0.2 · 0.5)) + 0.2 · 0.5 = 0.316.

Unfortunately this type of technique is feasible only for small formulae. This
problem is known as the disjoint-sum-problem (as it is concerned with mak-
ing the contributions of the different parts of the summation non-overlapping)
and is #P-complete [10]. While both PRISM and PHA avoid the problem by
imposing the requirement of mutually exclusive proofs, ICL uses a symbolic dis-
joining technique to refine proofs into formulae describing mutually exclusive
sets of possible worlds [8]. The ProbLog system deals with it using Reduced Or-
dered Binary Decision Diagrams (BDDs), which are graphical representations of



a Boolean function over a set of variables, which significantly extends scalability
of inference. Still, at some point one needs to resort to approximate inference
techniques. Exact Inference bottlenecks lie in two separate steps, a first possible
overhead both for space and time is collecting the proofs which can be exponen-
tial in the number of probabilistic facts. Even when one successfully collects all
the proofs, solving the disjoint-sum-problem is a #P-complete problem and the
BDD approach easily can explode in space.

2.2 Approximate Inference: Program Sampling

An alternative approach to inference is the use of Monte Carlo methods, that is,
to use the ProbLog program to generate large numbers of random subprograms
and to use those to estimate the probability. More specifically, such a method
proceeds by repeating the following steps:

1. sample a logic (sub)program L from the ProbLog program

2. search for a proof of the initially stated query q in the sample L ∪BK
3. estimate the success probability as the fraction P of samples which hold a

proof of the query

The implementation of this approach for ProbLog, as described in [4], takes
advantage of the independence of probabilistic facts to generate samples lazily
while proving the query, that is, sampling and searching for proofs are inter-
leaved. To assess the precision of the current estimate P , at each m samples the
width δ of the 95% confidence interval is approximated as

δ = 2 ·
√
P · (1− P )

N
(5)

If the number of samples N is large enough the interval of confidence becomes
smaller, and the certainty that the estimate is close to the true probability of
the query increases. We will refer to this method as Program Sampling here to
avoid confusion with the method that will be introduced in Section 3.

3 DNF Sampling

Program Sampling generates samples by exploring the SLD tree, which can be
expensive if there are many failing derivations. In this section, we therefore
introduce a new sampling based method for ProbLog which focuses sampling
on possible worlds containing a proof of the query of interest. This method first
constructs the DNF for the query as in exact inference, and then applies the
Monte-Carlo algorithm of Karp and Luby [5] to estimate the probability of the
DNF. In the following, we will discuss the algorithm and its implementation for
ProbLog in more detail.
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Fig. 2. Possible worlds associated to the conjunctions of (a∧b∧c)∨(b∧c∧d)∨(b∧d∧e).

3.1 An Example

Let us start by considering an example, namely the DNF F = (a ∧ b ∧ c) ∨
(b ∧ c ∧ d) ∨ (b ∧ d ∧ e), where we assume a probability of 0.5 for each random
variable. The probability of a conjunction is easily calculated as the product of
the probabilities of the involved facts, cf. Equation (3); in this case, each of the
conjunctions in the DNF thus has probability P (ci) = 0.125. As there are five
random variables, each possible world has probability 0.03125.

Figure 2 shows the possible worlds associated to each of the three conjunc-
tions. Summing the probabilities of the conjunctions, we obtain S(F ) = 0.375.
However, as can be seen in Figure 2, the conjunctions are not mutually exclusive:
all of them are true in world (1), and two of them are true in worlds (2) and (5).
In total, there are 8 different worlds to be taken into account for the probability
of F , which therefore is only P (F ) = 0.25.

DNF Sampling now associates each possible world w to the first conjunction
that is true in w, that is, worlds (1) and (2) are associated to a∧b∧c, world (5) to
b∧c∧d. Samples are generated by first sampling a conjunction ci with probability
P (ci)/S(F ), and then generating a possible world by setting the truth values of
the variables in ci such that ci is true, and sampling truth values for remaining
variables. For instance, we could obtain b ∧ c ∧ d and world (2) in this way, but
as world (2) is associated to a∧ b∧ c, this sample would be considered negative,
whereas a∧b∧c together with world (2) would be considered positive. Informally
speaking, the sampling procedure thus rejects half of the contribution of world
(2), thereby reducing it to its true value. As for each pair (ci, w), the probability
of sampling that pair is P (w)/S(F ) and thus proportional to P (w), given a
sufficient number N of samples, the fraction Naccepted/N of positive samples
approaches P (F )/S(F ), and we can thus estimate P (F ) as S(F ) ·Naccepted/N .

3.2 Algorithm

We now formalise the algorithm. Let F = C1∨. . .∨Cm be a propositional DNF for
query q in the ProbLog program T , where the Ci contain neither contradictions
nor multiple occurrences of the same variable. We denote possible worlds – truth
value assignments to all random variables – by w. The space from which samples
are drawn is defined as U = {(w, i)|w |= Ci}, and we associate each possible
world w to the first conjunction that is true in w, that is, the samples that will
be accepted are those from A = {(w, i)|w |= Ci ∧ ∀j < i : w 6|= Cj}. For each
possible world w with w |= F , U thus contains a pair (w, i) for each Ci that is



true in w, whereas A only contains the pair with minimal i. We define the sum
of probabilities for DNF F as

ST (F ) =

m∑
i=0

∏
fj∈Ci

pj (6)

Note that if conjunctions are mutually exclusive as discussed in Section 2.1,
ST (F ) is equal to the probability of F being true, but it can be much higher in
general.

DNF Sampling generates N samples in the following way

1. randomly choose Ci according to P (Ci|T )/ST (F )
2. randomly choose a possible world w where Ci is true
3. increment Naccepted if (w, i) ∈ A

The probability of formula F is then estimated as

PDNF (q|T ) = ST (F ) · Naccepted
N

(7)

Note that depending on the structure of the problem and the value of ST (F ),
estimates based on small numbers of samples may not be probabilities yet, that
is, be larger than one, especially if the actual probability is close to one. This is
due to the fact that a sufficient number of samples is needed to identify overlap
between conjunctions by means of sampling and to accordingly scale down the
overestimate ST (F ).

3.3 Convergence

DNF Sampling is an instance of the fully polynomial approximation scheme of
Karb and Luby [5], that is, the number of samples required for a given level of
certainty is polynomial in the input length (the DNF in our case). For formal
detail, we refer to [5], and instead give a rough illustration here. The algorithm
uses the normalization factor ST (F ) from equation (6), therefore, in each sam-
pling step, the probability that the ith conjunction is sampled is P (Ci)/ST (F ).
It is then completed into a possible world according to the fact probabilities.
This possible world will be accepted exactly if all conjunctions with smaller
index are false in it. So the probability of sampling a specific Ci and a world
which will be accepted for this conjunction is P (Ci ∧ ¬DNFi−1)/ST (F ), where
DNFi =

∨
j=1...i Cj . As each world can only be accepted for exactly one con-

junction, the probability of sampling an arbitrary world that will be accepted
is the sum of this probability over all conjunctions, and for N samples, the es-
timated number of accepted possible worlds and the corresponding probability
estimate thus are:

E[Naccepted] =N · P (C1) + P (C2 ∧ ¬DNF1) + ...+ P (Cn ∧ ¬DNFn−1)

ST (F )

Pestimated =
E[Naccepted]

N
· ST (F )

=P (C1) + P (C2 ∧ ¬DNF1) + ...+ P (Cn ∧ ¬DNFn−1)



The last line corresponds to one way of solving the disjoint-sum-problem for the
original DNF, which is exactly what the purpose of the algorithm is.

In the current implementation of DNF Sampling, we use the same stopping
criterion as for Program Sampling. Investigating alternative criteria tailored to-
wards the new method and its convergence properties as analyzed in [5] is part
of future work.

3.4 Implementation

Here we explain some details about the ProbLog implementation of the algo-
rithm. We will assume that the DNF is stored as a doubly linked list of proofs,
which is sequentially accessible and can be traversed in both directions.1 The al-
gorithm starts from the start of the list and traverses it in forward direction. For
each proof, it calculates its probability as the product of its facts’ probabilities,
cf. Equation (3), as well as the sum of the probabilities of all proofs processed so
far, cf. Equation (6). The sum associated with the last proof is the normalisation
factor ST (F ) used in sampling.

Each sample first determines a proof αi (clause Ci). To this aim, we sample a
threshold T ∈ [0, 1) uniformly at random and use binary search on the memoized
summed probabilities to identify αi as the first proof whose associated sum
exceeds T · ST (F ).

To exemplify this procedure, let us consider the graph from Figure 1 and the
list holding the proofs for the query path(a, h) as shown in Figure 3, where
initial computations are already included. Assuming threshold T = 0.4 has been
chosen, the algorithm determines the 3rd proof to be the chosen proof αi.

# Proof Probability Sum

1. [a, b, e, f, h] 0.0672 0.0672
2. [a, b, d, f, h] 0.0280 0.0952
3. [a, b, d, g, h] 0.0336 0.1288
4. [a, c, d, g, h] 0.0924 0.2212
5. [a, c, d, f, h] 0.0770 0.2982

Normalizing factor ST (F ): 0.2982

Fig. 3. A list holding the proofs of the query path(a, h) and their probabilities.

We now need to extend the sample by a possible world where αi is true.
As in Program Sampling, a lazy strategy that exploits independence of random
variables is followed for this purpose, where sampling the world is interleaved
with determining whether the sample will be accepted. First, we set the truth
values of all variables in αi such that αi is true. Truth values are recorded in an
array2 as either true, false, or undetermined. Next, the algorithm traverses the

1 ProbLog uses a trie datastructure for this purpose, but as this is not exploited in
the implementation, we simplify for ease of presentation.

2 We used an array to ensure fast look-up time.



list backwards starting from αi. For each proof αj , we check the truth value of
each of its variables, and if it is not yet fixed in the current world, determine
it by sampling. As soon as αj is determined to be false in the current world,
that is, the known truth value of a variable is the opposite of the one needed to
make the current proof true, we stop its evaluation and continue with the next
proof αj−1. If a proof αj with j < i turns out to be true in the current world,
we know that the sample will not be accepted, and the algorithm terminates
the current iteration. If the last proof has been reached and determined to be
false in the current world, the sample is accepted and the counter Naccepted is
incremented. In both cases, the next iteration is started, until the desired number
N of samples is reached. The final step of the algorithm includes the calculation
of the approximated probability as shown in Equation (7).

4 Experiments

In this section, we experimentally evaluate our new algorithm. The purpose of
these initial experiments is:

1. to show that DNF Sampling converges to the exact probability when the
proofs are mutually exclusive,

2. to compare convergence of DNF Sampling with Program Sampling, and
3. to experimentally evaluate the performance of DNF Sampling.

To this end we used three different benchmarks.
The first benchmark is a Bayesian Network that encodes a family tree of 15

generations, where queries ask for the bloodtype of members of this pedigree.
Here, proofs are always mutually exclusive, which means that each sample will
be accepted, as no previous proof can be true in the same world. DNF Sampling
therefore converges immediately to the exact probability, as confirmed by the
results shown in Figure 4. These results also illustrate that focussing sampling
on the proofs can improve convergence compared to Program Sampling, where
the entire space of possible worlds needs to be explored to reach convergence.

For the following benchmarks, we estimate probabilities after each thousand
samples and report averages over ten runs, as well as their standard deviation
as error bars.

The second benchmark is the medium size Alzheimer graph of [4] with a
path/3 predicate that defines paths between nodes with a maximal number
of edges given by the third argument N . We consider the same pair of nodes
(’HGNC_983’, ’HGNC_620’) for N = 10 and N = 12, corresponding to 167
and 2120 proofs respectively. The exact method has difficulty in evaluating the
DNF for paths between those two nodes for N > 10. Note that if the number
of samples is smaller than the number of proofs, the algorithm cannot use all
proofs for its estimate. The results are summarised in Figures 5 and 6.

Figure 5 presents the results for query path(’HGNC_983’,’HGNC_620’,10),
where the exact probability can still be calculated. The results confirm that both



0.220

0.240

0.260

0.280

0.300

0.320

0.340

 80  320  560  800  1040  1280  1440

P
ro

ba
bi

lit
y

# Samples

Program sampling
DNF sampling

exact

Fig. 4. DNF Sampling convergence vs. Program Sampling convergence vs. Exact, for
the case of mutually exclusive proofs with query bloodtype(a,g4 f144).

0.220

0.225

0.230

0.235

0.240

0.245

0.250

0.255

0.260

 1000  50000  100000  150000

P
ro

ba
bi

lit
y

# Samples

Program sampling
DNF sampling

exact

Fig. 5. DNF Sampling convergence vs. Program Sampling convergence vs. Exact, for:
path(’HGNC 983’,’HGNC 620’,10).



0.240

0.245

0.250

0.255

0.260

0.265

0.270

0.275

0.280

 1000  50000  100000  150000

P
ro

ba
bi

lit
y

# Samples

Program sampling
DNF sampling

Fig. 6. DNF Sampling convergence vs. Program Sampling convergence, for:
path(’HGNC 983’,’HGNC 620’,12).

approximation methods converge towards the exact probability. Furthermore, we
observe that Program Sampling converges faster.

Figure 6 shows the evaluation of a computationally harder query, for which
the exact value can not be calculated. Again we see that the sampling methods
tend to converge towards one value. And especially after the point of 50, 000 sam-
ples, 99.96% of the results are within an interval of size 0.005. Reaching towards
the 100, 000th sample the convergence in one value is obvious. The specificity of
different problems will require different number of samples for convergence, but
we show empirically that the method will converge towards the exact success
probability.

Our third benchmark uses the same Alzheimer data set, but with nodes
(’HGNC_582’, ’HGNC_620’) for N = 6 and N = 8, collecting 145 and 1836
proofs respectively. The exact method has difficulty in processing the DNF
for N > 6. These queries have the characteristic that the propability P → 1.0.
We present this benchmark as it is a worst case scenario for DNF Sampling.

One can notice in Figures 7 and 8, that DNF Sampling can result in esti-
mating a probability higher than 1.0, this is not an erroneous result as one can
infer from Equation (7). One can also notice that DNF Sampling has difficulty
to converge at the second query of Figure 8.

Finally, we present in Figure 9 the last benchmark. The query used for that
experiment is actually a query containing many failing derivations, because of
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that Program Sampling has difficulty at converging. Here we can see significantly
better convergence by DNF Sampling.
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Fig. 9. DNF Sampling convergence vs. Program Sampling convergence vs. Exact, for:
path(’HGNC 582’,’HGNC 983’,7).

Our experiments have shown that DNF Sampling is not as potent as we
expected compared with Program Sampling, still we saw immediate convergence
for problems where the proofs are mutually exclusive and we have indications
that for problems where the proofs will have some exclusiveness DNF Sampling
is very potent.

5 Related Work

As mentioned earlier, DNF Sampling is based on the general sampling scheme
introduced in [5]. This scheme has been used for probability estimation in the
context of probabilistic databases [11,12] and probabilistic graph mining [13]. In
the context of statistical relational learning, the scheme has been used to esti-
mate the number of true groundings of a clause [14]. While the use of sampling
in combination with a reduction to a DNF formula for probabilistic logic pro-
grams has already been proposed (but not realized) by [15], to the best of our
knowledge, this paper is the first to actually use DNF Sampling for inference



in a probabilistic logic programming system. The ProbLog system also includes
approximate inference methods that do not use sampling, but rely on restricting
the number of proofs encoded in the DNF [4].

6 Conclusions and Future Work

We have introduced DNF Sampling, a new sampling method for approximate
inference in ProbLog. DNF Sampling exploits the same reduction to DNF as
ProbLog’s exact inference method. It is a valuable addition to the ProbLog sys-
tem, as it allows one to exploit the already constructed DNF even if its exact
processing turns out to be infeasible. However, our experimental comparison of
the new method with Program Sampling, ProbLog’s previous sampling based in-
ference technique, indicates that Program Sampling outperforms DNF Sampling
for approximate inference in biological networks, and should thus be preferred
if it is expected that exact inference will be infeasible. Future work includes the
application of DNF Sampling in the context of the nested tries structure used in
tabled ProbLog [16], where solving the disjoint-sum-problem becomes intractable
while a compact representation of the underlying formula is available. As this
representation exploits the presence of shared structure in the formula, extend-
ing DNF Sampling to this case is a promising approach to further increase the
scalability of ProbLog inference.
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