三元硼化物 AlMgB₁₄ 超硬材料的研究进展

杨 芳¹,闫 果²,李少强²,李成山^{1,3},熊晓梅¹,王庆阳¹,刘国庆¹,冯建情¹

(1. 西北有色金属研究院,陕西西安710016)(2. 西部超导材料科技股份有限公司,陕西西安710018)(3. 宝胜集团有限公司,江苏扬州225800)

摘 要: AlMgB₁₄超硬材料具有高硬度、低密度、低摩擦系数、高热稳定性和良好的热电性能,可以应用于耐磨、切削装备、微器件和微电子机械装置的保护涂层等领域。本文介绍了目前制备 AlMgB₁₄ 超硬材料的几种方法,详细介绍了通过分步反应法在常压条件下合成 AlMgB₁₄ 超硬材料。首先,均匀混合 Mg 粉、Al 粉、B 粉和不同含量的 Ti 粉,在 850 ℃ 密闭氩气条件下烧结 2 h,得到 Al 和 Ti 掺杂的 MgB₂块体;第二步在真空条件下 1050 ℃下烧结 0.5 h 得到目标产物 AlMgB₁₄-TiB₂。微观结构显示 AlMgB₁₄ 晶粒细小,在晶界处有均匀细小的 TiB₂颗粒弥散分布。还介绍了 AlMgB₁₄块体 和薄膜的研究现状,论述了 AlMgB₁₄ 超硬材料未来的研究重点。

关键词: AlMgB14; 超硬材料; 研究进展

中图法分类号: TQ174 文献标识码: A 文章编号:

文章编号: 1002-185X(2016)04-1088-05

三元硼化物 AlMgB₁₄是当前国际上超硬材料领域的 研究热点之一,近年来引起国内外学者的普遍关注^[1-20]。 与金刚石和立方氮化硼等传统亚稳态超硬材料不同, AlMgB₁₄超硬材料属于平衡态材料^[1,2],具有高硬度^[3,4]、 低密度^[5,6]、低摩擦系数^[7]、高热稳定性^[8]和良好的热电 性能^[9-11]。美国 Ames 国家实验室首次系统报道了三 元硼化物 AlMgB₁₄超硬复合材料的合成及其特性^[4], 制备的 AlMgB₁₄晶体结构为二十面体正交结构,维 氏硬度达到 32~46 GPa,这基本上和立方氮化硼的 硬度相当。

AlMgB₁₄ 材料相对金刚石具有更优良的抗磨损性 能,是一种新型的抗降解材料。AlMgB₁₄ 的密度仅为 2.66 g/cm³,远低于其它超硬材料(如金刚石和立方氮 化硼),而且在温度高达 1300 ℃时也不和碳钢、不锈 钢或钛合金反应,具有高热稳定性。AlMgB₁₄ 的电导 率远高于其它传统超硬材料,基本上和多晶硅的电导 率相当。AlMgB₁₄ 最吸引人的地方还在于其低廉的价 格,其制造成本比金刚石和立方氮化硼低 5~10 倍^[7]。 这些优异的性能使得 AlMgB₁₄不但可以应用于耐磨、 保护涂层、切削装备制造等传统领域,还可以广泛应 用于热电器件、光电探测器、中子掩蔽体、微机械制 造及航空航天关键部件等先进科学领域。因此,发展 AlMgB₁₄ 超硬复合材料的制备新技术,并深入开展与 之相关的基础理论研究,具有重要的科学意义与现实 意义。

1 $AIMgB_{14}$ 块体的研究现状

在过去几十年中,人们对 B₁₂ 二十面体结构的富 硼化合物进行了大量研究,Matkovich 和 Economy 最 早报道了 AlMgB₁₄^[6],不久科学家们就确定了其晶体 结构^[12],如图 1 所示,以硼二十面体为一个簇的 AlMgB₁₄ 的透视图,最大和其次大的原子分别是镁和 铝原子。由于各种金属位置不能完全被占满,因此 AlMgB₁₄的实际化学式应该为 Al_{0.75}Mg_{0.78}B₁₄。

从 20 世纪 80 年代至今,很多方法用来制备 AlMgB₁₄ 粉末或者块体材料,如脉冲电流烧结法^[9]、 生长单晶法^[12]、热压法^[4,14-18] 和电场激活及压力辅助 法^[21]。目前科研人员主要采用热压法直接混合烧结。 Cook 等^[4]首先采用镁粉、铝粉和无定形硼粉作为前驱 物,按照 AlMgB₁₄的化学计量比机械合金化,然后在 1300~1500 ℃、氩气保护条件下热压烧结 2 h,获得了 硬度达到 32~35 GPa 的 AlMgB₁₄ 材料;在前驱物粉末 中添加质量分数 30%的 TiB₂ 热压后,AlMgB₁₄ 合金硬 度高达 46 GPa。Ahmed 等^[15]对镁粉、铝粉和无定形硼

收稿日期: 2015-03-15

基金项目: 国家自然科学基金 (51302226, 51372207); 国家重点基础研究发展计划("973"计划) (2011CBA00104); 陕西省自然基金项目 (2014JQ6198); 江苏省"双创计划"人才资助课题

作者简介:杨 芳,女,1980年生,博士,高级工程师,西北有色金属研究院超导材料研究所,陕西 西安 710016,电话: 029-86231079, E-mail: yangfang@c-nin.com

粉前驱物进行机械合金化获得 AlMgB₁₄ 粉末,然后采 用亚微米级 SiC、WC、TiB₂ 作为第二相添加,混合球 磨 30 min,最后在氩气气氛下于 107 MPa、1400 ℃热 压烧结 1 h。结果显示,TiB₂改善基体的硬度和断裂韧 性效果最佳,质量分数 60%~70%TiB₂ 的添加使得 AlMgB₁₄复合材料的硬度从 28.2 GPa 增加到 36.8 GPa。

表1给出了几种超硬材料的密度和硬度。一般情况下 AlMgB₁₄-TiB₂复合材料中添加的 TiB₂的颗粒尺 寸为微米级^[15,18],如图2所示。然而,采用直接混合 烧结法合成 AlMgB₁₄的反应温度高、烧结时间长,不 但成本增加,而且通过该方法合成的 AlMgB₁₄基体中 出现大量氧化物杂相 MgAl₂O₄^[16,17],导致基体硬度大 幅下降;电阻率测试结果也表明大量的 MgAl₂O₄会导 致基体的电阻率大幅下降。

表 1 超硬材料的密度和硬度 Table 1 Density and hardness of selected hard material^[4]

Tuble T Denský und hurdness of selected hurd hurdrini					
Material	C (diamond)	BN (cubic)	AlMgB ₁₄	AlMgB ₁₄ +Si	$AlMgB_{14} + TiB_2 \\$
Density/g cm ⁻³	3.52	3.48	2.66	2.67	2.70
Hardness/GPa	70	45~50	32~35	35~40	40~46

图 2 AlMgB₁₄-30 wt% TiB₂和 AlMgB₁₄-70wt% TiB₂的微观结构 Fig.2 Microstructure of AlMgB₁₄-30 wt%TiB₂ (a) and AlMgB₁₄-70wt% TiB₂ (b): (1) dark regions are AlMgB₁₄, (2) bright regions are TiB₂, and (3) tiny extra bright regions are impurities

常压合成硼化物超硬材料是近年来重要的研究方 向。综合前期研究结果^[22-24],本课题组提出采用 Al 掺杂 MgB2或 Al、Ti 掺杂 MgB2作为前驱体,在常压 条件下通过合成-分解的分步反应制备 AlMgB14 和 AlMgB14-TiB2超硬材料的新思路^[25,26]。第1步采用固 态烧结法,首先在手套箱中把 Mg 粉、Al 粉、B 粉和 不同含量的 Ti 粉按 6:1:(14+2x):x 原子比例称重, 其中 x=0, 0.25, 0.5, 1。然后均匀混合粉末, 每组样品都 在玛瑙研钵内手工研磨约 30 min。而后在 10 MPa 的 压力下压制成尺寸为 Φ20 mm×2 mm 的块材。所得块 材放入 Al₂O₃烧舟内,分别在 850 ℃密闭氩气条件下 烧结 2 h,得到 Al 和不同含量 Ti 掺杂的 MgB_2 块体。 第 2 步把第 1 步固态烧结得到的样品在真空条件下 1050 ℃烧结 0.5 h, Mg 蒸气挥发, 得到目标产物 AlMgB14-xTiB2。从不同 Ti 含量掺杂时 AlMgB14-xTiB2 块体断口的高分辨扫描电镜照片图3可以看出^[26],随 着 Ti 含量的增加, 第二相粒子 TiB2 主要分布在晶界 处, 晶粒减小, 造成晶界数量增多。AlMgB14-TiB2复 合材料中添加的 TiB2 的颗粒尺寸为微米级^[15,18],在本 课题组的样品中作为第二相添加物的TiB2颗粒尺寸降 低到纳米级,这无疑会改变 AlMgB14/TiB2 界面,并对 基体微结构和性能产生显著影响。

此外,通过红外光谱(FTIR)实验表征,发现样品 中存在 B₁₂ 二十面体基元对应的特征峰(1100 cm⁻¹)。

图 3 AlMgB₁₄-*x*TiB₂ 块体的高分辨扫描电镜照片 Fig.3 SEM micrographs of AlMgB₁₄-*x*TiB₂ bulk: (a) *x* =0, (b) *x* =0.25, (c) *x* =0.5, and (d) *x* =1

B₁₂二十面体骨架是决定硬度的主要因素。本课题组选 择了一个样品,对其表面深灰色区域进行纳米测试, 经测试计算显示纳米硬度为 11 GPa^[25]。但是,由于 AlMgB₁₄块材是由 Mg 在分解反应中挥发后生成,块 体中孔洞太多,块体不够致密,手工研磨就可得到粉 末,导致难于真实测试本实验中样品的本征硬度。这 种方法适合于生成含有纳米TiB₂添加的AlMgB₁₄-TiB₂ 复合超硬材料粉末,如果需要致密块体测试样品本征 硬度,可以考虑用放电等离子烧结或热压烧结我们制 备的粉末材料。

2 AlMgB₁₄ 薄膜的研究现状

目前为止,国内外对 AlMgB₁₄ 的研究主要集中在 粉末和块材,事实上 AlMgB₁₄ 薄膜作为高硬度涂层也 有广泛应用。AlMgB₁₄ 的热膨胀系数为 9×10⁻⁶ K^{-1[8]}, 这个值非常接近于钢和钛的热膨胀系数,加上 AlMgB₁₄ 材料本身具有很高的硬度,这使得 AlMgB₁₄ 完全有希望覆盖在金属上作为耐磨涂层。AlMgB₁₄ 薄 膜为纳米尺度时,其量子效应、物质的局域性和巨大 的表面及界面效应,使材料的很多性能发生质变,呈 现出许多不同于宏观物体的奇异现象。近几年来,一 些超硬纳米复合薄膜体系表现出优越的力学性能,引 起人们的广泛关注。

物理气相沉积法可以低温低成本的制备出高纯度、应用范围广泛的 Al-Mg-B 薄膜材料,美国 Ames 实验室通过脉冲激光沉积法(PLD)在 Si 或 SiO₂ 衬 底上沉积了非晶 Al-Mg-B 薄膜^[27-30]。这种非晶薄膜的 硬度高达 40 GPa^[29]。他们认为由于 B₁₂二十面体是典 型的共价 sp³键的晶体结构,在 B₁₂二十面体是勇 键是缺失电子的,因此硬度预计应该比传统超硬材料 低,但是实际得到的薄膜其硬度和立方氮化硼的硬度 相当。这种反常可能是由于薄膜引入金属(Al,Mg) 掺杂造成的。金属原子将大量的价电子转移到 AlMgB₁₄型正交硼化物中,导致 B₁₂二十面体的价带 被全部占据,所以生成了更强的 B-B 键,这使得 AlMgB₁₄ 非晶薄膜的硬度进一步加强。

和 PLD 法相比,磁控溅射更适合制备高质量、大 尺度的薄膜样品^[31-33],而且有利于通过调整溅射参数 来控制薄膜结构,图 4 给出了 Yan 等人制备 Al-Mg-B 薄膜的表面形貌^[32]。

大连理工大学的三束材料改性教育部重点实验室 采用磁控溅射的方法制备了 Al-Mg-B 薄膜^[31,33-35],研 究了基片温度、溅射功率、靶材组成、偏压及其掺杂 对 Al-Mg-B 薄膜的元素含量、成键性质、表面形貌及 其力学性能的影响。结果表明,由于受到基片温度和 硼溅射功率的影响,Al-Mg-B 薄膜的硬度随着 B 含量 的升高而增加。Al-Mg-B 薄膜的最大硬度约为 31 GPa,其硼含量为 65 at%。Al-Mg-B 薄膜的表面很光 滑,随着基片温度和硼溅射功率的增加,薄膜的表面 粗糙度变小。在沉积 Al-Mg-B 薄膜过程中,沉积温度 和硼溅射功率也很重要,影响了薄膜中硼的含量。掺 杂的 Al-Mg-B 薄膜的性能存在明显的差异,分别以铬、

- 图 4 以最高靶材功率密度(~1.0 W/cm²)溅射的 Al-Mg-B 薄膜 的 AFM 照片
- Fig.4 Plane-view AFM image acquired from the Al-Mg-B film deposited at the highest target power density (~1.0 W/cm²)

钛、氮为掺杂物,通过磁控溅射法采用两靶共溅射制 备了掺杂 Al-Mg-B 薄膜。结果表明,Cr、Ti和N都分 别充分地进入薄膜中;Al-Mg-B 薄膜中掺入Cr元素对 薄膜的 B₁₂ 的生长有一定的抑制作用,从而降低了薄 膜的硬度;掺入N的薄膜中化学键态主要是 sp²型 B-N 键,说明 B 元素更容易和N元素结合,不利于 B₁₂的 形成,从而导致掺 N 的薄膜硬度仅仅为 2 GPa;掺入 Ti 的薄膜的硬度只有 9 GPa,可能是由 B-O 键导致的。 用 AlMg 复合靶材溅射 Al-Mg-B 薄膜时,随溅射功率 改变,薄膜中不同元素含量发生改变,Al-Mg-B 薄膜 的硬度和杨氏模量随之发生改变,如图 5 所示,在溅 射功率为 20 W 时,薄膜的硬度和弹性模量有一个最 优值。

图 5 不同元素含量Al-Mg-B薄膜的硬度和杨氏模量 Fig.5 Hardness and Young's modulus of Al-Mg-B thin films

with different element contents

3 AlMgB₁₄超硬材料未来的研究重点

事实上热压制备的AlMgB₁₄块体硬度一般为32~46 GPa,薄膜在30~40 GPa之间。最近的理论工作^[2]预言 *x*MgB₁₄ (*x*= Al, Ge, Si, C, Mg, Sc, Ti, V, Zr, Nb, Ta, Hf) 晶体的体模量在205~220 GPa区间,但是这些三元硼化 物的剪切模量、杨氏模量以及微观硬度,还很少有理论 研究。Al-Mg-B材料有悖于传统超硬材料的特征:即高 对称性、简单晶格、强的sp³键等,其高硬度来源的微 观物理机制还不清楚。细小弥散的TiB₂相有助于提高 AlMgB₁₄基体的硬度和耐磨性^[4,15,18-20],AlMgB₁₄/TiB₂ 界面及其特性是影响强化效果的重要因素,但目前其强 化机理尚不清楚,未来有必要深入研究AlMgB₁₄/TiB₂ 界面及其特性。另外,AlMgB₁₄-TiB₂复合材料中TiB₂ 的颗粒尺寸仅为微米级^[15],如果作为第二相添加物的 TiB₂颗粒尺寸能降低到纳米级,无疑会改变 AlMgB₁₄/TiB₂界面,并对基体微结构和性能产生显著影响。因此,探索AlMgB₁₄复合材料的新合成方法及其反应机理,控制第二相粒子的尺寸、分布及其与基体的界面状态,降低反应温度、缩短反应时间,对于提高AlMgB₁₄的性能和发展其应用化具有重要意义。

参考文献 References

- [1] Ivanovskii A L. Prog Mater Sci[J], 2012, 57: 184
- [2] Kölpin H, Music D, Henkelman G et al. Phys Rev B[J], 2008, 78: 054 122
- [3] Higashi I, Kobayashi M, Okada S et al. J Cryst Growth[J], 1993, 128: 1113
- [4] Cook B A, Harringa J L, Lewis T L et al. Scripta Mater[J], 2000, 42: 597
- [5] Teter D M. MRS Bull[J], 1998, 23: 22
- [6] Matkovich V I, Economy J. J Acta Crystallogr B[J], 1970, 26: 616
- [7] Cherukuri R, Womack M, Molian P et al. Surf Coat Technol[J], 2002, 155: 112
- [8] Russell A M, Cook B A, Harringa J L et al. Scripta Mater[J], 2002, 46: 629
- [9] Takeda M, Fukuda T, Domingo F et al. J Solid State Chem[J], 2004, 177: 471
- [10] Bairamashvili I A, Kekelidze L I, Golikova O A et al. J Less Common Met[J], 1979, 67: 461
- [11] Miura S, Sasaki H, Takagi K et al. J Phys Chem Solids[J], 2014, 75: 951
- [12] Okada S, Shishido T, Mori T et al. J Alloy Compd[J], 2007, 408-412: 547
- [13] Herrmann M, Bodkin R, Coville N J et al. J Eur Ceram Sci Technol[J], 2010, 2: 55
- [14] Cook B A, Russell A M, Harringa J L et al. J Alloy Compd[J], 2004, 366: 145
- [15] Ahmed A, Bahadur S, Cook B A et al. Tribol Int[J], 2006, 39:129
- [16] Kevorkijan V, Skapin S D, Jelen M et al. J Eur Ceram Soc[J], 2007, 27: 493
- [17] Lewis T L, Cook B A, Harringa J L et al. Mater Sci Eng A[J], 2003, 351: 117
- [18] Ahmed A, Bahadur S, Cook B A *et al. Tribol Int*[J], 2009, 42: 706
- [19] Cook B A, Peters J S, Harringa J L et al. Wear[J], 2011, 271:640
- [20] Higdon C, Cook B A, Harringa J L et al. Wear [J], 2011, 271:2111

- [21] Liu Wen(刘 雯), Miao Yang(苗 洋), Chen Shaoping(陈少平) et al. J Inorg Mater(无机材料学报)[J], 2013, 28: 369
- [22] Yan S C, Yan G, Liu C F et al. J Am Ceram Soc[J], 2007, 90: 2184
- [23] Zhao Y, Feng Y, Cheng C H et al. Appl Phys Lett[J], 2001, 79: 1154
- [24] Zhao Y, Huang D X, Feng Y et al. Appl Phys Lett [J], 2002, 80: 1640
- [25] Sun Y Y, Zhang P X, Liu G Q et al. Mater Lett[J], 2011, 65: 2158
- [26] Li C S, Yang F, Yan G et al. J Alloy Compd[J], 2014, 587: 790
- [27] Tian Y, Womack M, Molian P et al. Thin Solid Films[J], 2002, 418: 129
- [28] Tian Y, Constant A, Lo C C H et al. J Vac Sci Technol[J], 2003, 21: 1055

- [29] Tian Y, Bastawros A F, Lo C C H et al. Appl Phys Lett[J], 2003, 83: 2781
- [30] Tian Y, Li G, Shinar J et al. Appl Phys Lett[J], 2004, 85: 1181
- [31] Wu Z L, Bai Y Z, Qu W C et al. Vacuum[J], 2010, 85: 541
- [32] Yan C, Zhou Z F, Chong Y M et al. Thin Solid Films[J], 2010, 518: 5372
- [33] Jiang Xue(蒋 雪), Qu Wenchao(曲文超), Zhao Jijun(赵纪军) et al. Scientia Sinica Phys, Mech & Astron(中国科学:物 理学 力学 天文学)[J], 2011, 41: 764
- [34] Wu Zhanling(吴占玲). Study on Properties of Al-Mg-B Thin Films Prepared by Magnetron Sputtering (磁控溅射法制备 的Al-Mg-B薄膜的研究)[D]. Dalian: Dalian University of Technology, 2011
- [35] Qu W C, Wu A M, Wu Z L et al. Rare Metals[J], 2012, 31: 164

Research Progress of AlMgB14 Super-hard Materials

Yang Fang¹, Yan Guo², Li Shaoqiang², Li Chengshan^{1,3}, Xiong Xiaomei¹, Wang Qingyang¹, Liu Guoqing¹, Feng

Jianqing¹

(1. Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China)

(2. Western Superconducting Technologies Co., Ltd, Xi'an 710018, China)

(3. Baosheng Group Co., Ltd, Yangzhou 225800, China)

Abstract: AlMgB₁₄ super-hard materials can be applied in some fields such as wear-resistant, self-lubricating and protective coatings for cutting tools and protective coatings for micro devices and micro electromechanical components, due to their extremely high hardness, low density, high thermal stability and desirable thermoelectric properties. In the present paper, we introduced some methods for preparing AlMgB₁₄ super-hard materials. Detailed techniques about AlMgB₁₄ disks synthesis at ambient pressure through a two-step heat treatment were introduced. In the first step, MgB₂ disks doped with Al and Ti were fabricated through composition of uniformly mixed Mg, B, Al powders and Ti powder of different contents in the form of pressed disks heated at 850 \degree for 2 h in closed argon atmosphere. And in the second step, target AlMgB₁₄-TiB₂ disks were obtained after sintering the MgB₂ disks at 1050 \degree for 0.5 h in vacuum. The microstructure images show that the grain size of AlMgB₁₄ is fine and the nano-scale TiB₂ particles as the second phase induced by Ti doping are uniformly distributed at the grain boundaries. The research status on bulk and film of AlMgB₁₄ and the future researching scope of AlMgB₁₄ were also presented.

Key words: AlMgB14; super-hard material; research progress

Corresponding author: Yan Guo, Ph. D., Senior Engineer, Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, P. R. China, Tel: 0086-29-86231079, E-mail: gyan@c-nin.com