

电动夹爪 **Electric Gripper**

软件操作手册 Software Operation Manual

HIWIN。 工业4.0 优质伙伴

INDUSTRIE 4.0 Best Partner

多轴机器人

Multi-Axis Robot

取放作业/组装/整列与包装/半导体/ 光电业/汽车工业/食品业

- 关节式机器手臂
- 并联式机器手臂
- 史卡拉机器手臂
- 晶圆机器人
- 电动夹爪
- 整合型电动夹爪
- 旋转接头

单轴机器人

Single-Axis Robot 高精密产业/半导体/ 医疗自动化/FPD面板搬运

- KK, SK
- KS KA
- KU, KE, KC

Torque Motor 回转工作台

Torque Motor Rotary Table 航太/医疗/汽车工业/工具机/产业机械

- RAB系列
- RAS系列
- RCV系列
- RCH系列

滚珠丝杆

Ballscrew

精密研磨/精密转造

- Super S 系列 (高 Dm-N 值/高速化)
- Super T 系列 (低噪音/低振动)
- 微小型研磨级
- E2 环保润滑模组
- R1 螺帽旋转式
- Cool Type 节能温控丝杆 RD 高DN节能重负荷
- 滚珠花键

直线导轨

Linear Guideway

精密机械/电子半导体/生技医疗

- 滚珠式— HG重负荷型, EG低组装, WE宽幅型, MG微小型, CG扭矩型
- 告音十一 QH重负荷型, QE低组装型, QW宽幅型, QR滚柱型
- 其他—

RG滚柱型, E2自润型, PG定位型, SE金属端盖型, RC强化型

特殊轴承

Bearing

工具机产业/机械手臂

- 交叉滚柱轴承
- 滚珠丝杆轴承
- 精密线性轴承
- 轴承座

谐波减速机

DATORKER® Robot Reducer

机器人/自动化设备/半导体设备/工具机

- WUT型-组合式(P)
- WUI型-组件式(C)
- WTI型-组合式(P)
- WTI型-密封式(A)

AC伺服电机&驱动器

AC Servo Motor & Drive 半导体设备/包装机/SMT机台/ 食品业机台/LCD设备

- 驱动器—D1, D1-N, D2T伺服电机—50W~2000W

医疗设备

Medical Equipment

医疗院所/复健中心/疗养中心

- 下肢康复训练机
- 沐浴水疗系统 • 内窥镜扶持机器手臂

直线电机

Linear Motor

自动化搬运/AOI光学检测/ 精密加工/电子半导体

- 铁心式直线电机
- 无铁心式直线电机
- 棒状直线电机
- 平面电机 • 空气轴承定位平台
- X-Y平台
- 龙门系统

力矩电机&直驱电机

Torque Motor &

Direct Drive Motor

检测设备/工具机/机器人

- 旋转平台系列-TMS,TMY,TMN
- 水冷式系列-TMRW
- · 高转速水冷系列-TMRI

目录

1 前言
2 安全声明
3 系统需求
4 安装说明2
4.1 安装2
4.2 卸载4
5 操作流程与注意事项5
5.1 开启程序5
5.2 联机与初始化6
5.3 动作命令8
5.4 自动操作13
5.5 数据表16
附录一: 快速上手流程
附录二:接线范例23
附录三:机械手臂语言范例25
附录四: 故障排除手册27

1前言

感谢您购买 HIWIN XEG 系列电动夹爪。[XEG-W1]人机接口是设置夹爪控制器 XEG-C1 控制参数的软件。随着使用本软件,您可以轻松设置复杂的指令,像是对夹爪下达位置命令、调整夹持速度、切换对象识别等,同时,您可以储存已设置的参数与动作,简化每次启动的工作程序。此外,在人机接口中,您可随时监测夹爪的状态。藉由以上功能,[XEG-W1]人机接口让您能更简单使用 HIWIN XEG 系列电动夹爪。

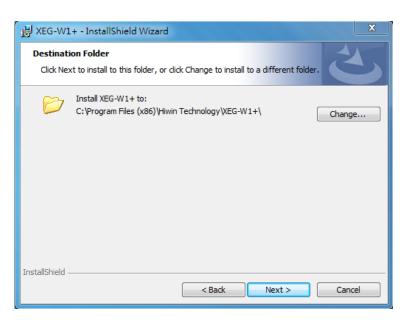
2 安全声明

本手册的安全说明是为让用户能正确使用产品,避免意外伤及使用者、周围人群以及设备,故使用前请详读本手册,并严格遵守相关规范,以确保您的安全。

3 系统需求

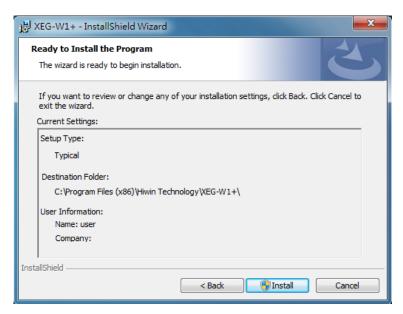
- ✓ Windows XP, Windows 7, Windows 8, Windows 10 之操作系统。
- ✓ 具备 RS232 或 USB 端口之个人计算机。
- ✓ 需安装.NET Framework 4 Client Profile 以上版本。

4 安装说明

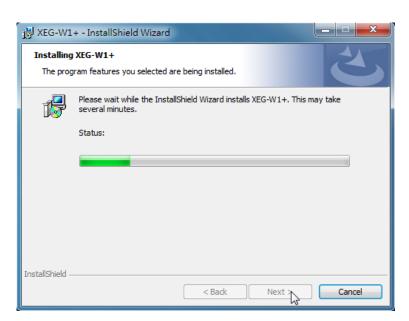

4.1 安装

用户如需用计算机设定控制器,请先安装[XEG-W1]。打开安装文件,会跳出安装精灵窗口,如下图。

安装精灵窗口

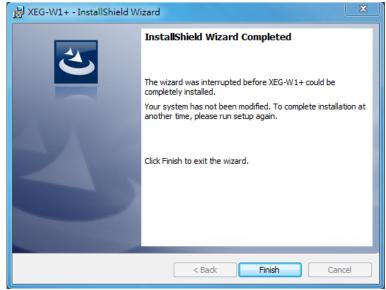

阅读后,点选[Next],进入安装路径选择。

安装路径选择



系统有默认安装路径,若要更改路径,请点选[Change]来设定。确认安装路径后,点选[Next]进入确认页面。

确认页面


页面中列出安装内容与设定,如需更改,请按[Back]回到之前程序;如确认无误,点选[Install]以进行安装。

安装中

安装精灵会将程序安装到计算机中,此过程需数分钟的时间,请耐心等候。

安装完成

程序安装完成,勾选[Launch the program]以立刻启动[XEG-W1],若要稍后启动,则取消勾选。点选[Finish]以结束安装过程。

4.2 卸载

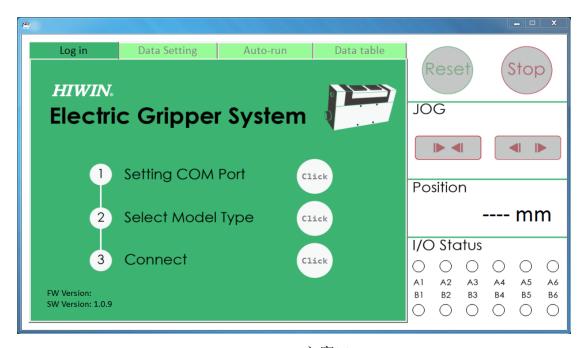
当使用者要卸载时,请到[控制台]或者左下角[开始]所有程序集中[HIWIN TECHNOLOGIES CORP]→[XEG-W1],单击[Uninstall]解除。

卸载程序

5 操作流程与注意事项

5.1 开启程序

程序安装完成后,请开启桌面的[XEG-W1]应用程序快捷方式,或[开始]所有程序集中[HIWIN TECHNOLOGIES CORP]→[XEG-W1]的执行档,来执行 XEG-W1。



桌面的应用程序快捷方式

开始所有程序集中的快捷方式

执行后将出现 XEG-W1 主窗口, 所有设定皆在此窗口操作。

XEG-W1 主窗口

该主窗口刚开启时为登入联机画面,供使用者选择夹爪的型号并联机,在联机后,右侧上方面板可操作[Reset]、[Stop]与时动。同时,右侧下方面板会实时显示当

前夹爪位置与控制器 I/O 状态。

如果用户要关闭程序,请单击 XEG-W1 右上角的关闭图示来关闭。

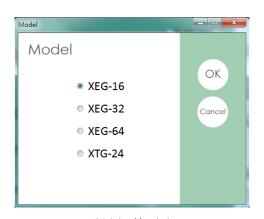
5.2 联机与初始化

● 选择端口

为在计算机端与控制器端间传递讯号,需建立两者间的联机,第一步先选择所用的端口。首先,在开启程序后,选择[Setting COM Port]旁的[Click]跳出窗口,展开窗口内的下拉式清单,看连接控制器的端口是否显示在选项中。如下图。

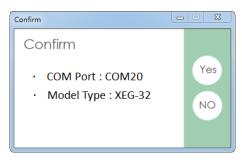
选择端口

连接控制器的端口口号码可由[设备管理器]来确认。图中[端口]下的[USB Serial Port(COM4)]即连接控制器的埠口。


假设目前连接控制器的端口是 4号(Com Port 4),则选择[COM4]来传递讯号。选择后,再点选[OK],原本主画面的[Setting COM Port]旁会显示目前选取的端口口,计算机端将从此端口口接收与发送讯号。

● 型号规格

由于 XEG-W1 可对应到 XEG 系列各电动夹爪,为让控制器端能正确接收讯号,在联机前需选择使用的夹爪型号。此步骤关系到计算机端发送的设定参数,如选择错误,将导致夹爪动作异常,例如,无法到达设定行程等。


点开[Select Model Type]旁的[Click],跳出窗口,点选窗口中所要的型号。如所用的夹爪型号为 XEG-32,则选取[XEG-32]。选取完后夹爪型号将显示在[Select Model Type]旁。

型号规格选择

● 联机启动

设定好端口与型号规格后,即可启动联机。点选[Connect]旁的[Click],跳出窗口,进行再次确认,确认无误后点选[Yes],计算机端会送出讯号并等候控制器端响应。如两端讯号交握(Handshaking)正确,会跳出 Reset 窗口询问是否初始化夹爪;反之,若交握失败,则不会有任何反应。

需回到上页

联机之后,主窗口会显示一脱机图标,若要切断联机,则点选该图示。在脱机状态下,XEG-W1 不允许用户传送讯号,所有的操作命令都将无效,也无法切换分页。一般而言,建议使用者在使用完毕后,将 XEG-W1 与 XEG-C1 的联机切断,避免他人误触。

脱机图示

RESET

为让夹爪位置信息正确,联机完成后务必初始化。通常在成功联机后,会跳出 Reset 窗口询问是否初始化。

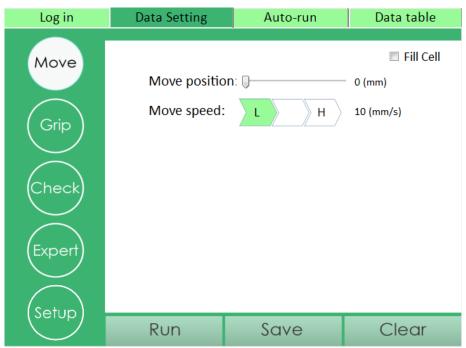
初始化窗口

用户也可以点击右方的[Reset]按钮来启动初始化。此过程会花费一些时间,但只需于联机或开机后启动一次即可。

Reset 按钮

5.3 动作命令

因应使用者不同的需求,XEG-W1提供各种操作,如寸动、移动、夹持、对象辨识、进阶设定、初始化指定设定、电子抹除式可复写唯独内存(EEPROM)的写入与读取。使用者可依自身需求设定适合的参数。本节将说明各参数的设定方法与流程。


寸动

[寸动]模式供用户一次移动固定的移动量。当使用者单击[开启]或[闭合],夹爪会以右方选择的速度段数移动固定行程;而当使用者长按[开启]或[闭合],夹爪则会以右方选择的速度段数持续移动,直到使用者放开[开启]或[闭合]。

● 动作设定

[Data Setting]分页供使用者写入要执行的动作指令。依照模式的不同,可分为只有移动的[Move]、只有夹持的[Grip]与可混合移动与夹持的[Expert]。

Data Setting 分页下的选项

特别要注意的是,当该模式没有方向选项时,表示该模式的移动为绝对位置,夹 爪将定位在[Move position]栏的位置上,Fill Cell 选项是给用户可以直接输入数值 设定。另外,[Move stroke]与[Gripping stroke]是两个不同的概念,[Move stroke] 代表夹爪以移动状态动作的范围,而[Gripping stroke]代表夹爪以夹持状态移动的范围,夹持状态会接在移动状态之后,例如,使用者将[Move stroke]设为关10.00(mm),[夹持量]设为1.00(mm),则夹爪会在以移动状态向内移动10.00(mm)后,再以夹持状态向内移动1.00(mm),总计移动11.00(mm),而且,只有当夹爪在夹持状态下夹到对象时,才会送出夹持信号。同样的,[Move speed]与[Gripping speed]分别对应了夹爪以移动状态和以夹持状态移动的速度;[Gripping force]代表夹持力量,其值为全额夹持力的比例值,最小差异单位为1%,详细的夹持力范围,请参阅电动夹爪与控制器规格书。

各动作参数

使用者在输入各字段参数后,单击下方的[Run]就能让夹爪运动;若要清除所有参数字段,只要单击下方的[Clear]即可。

如果用户要将动作写入内存中,供脱机时以 I/O 操作,则可以点击下方的[Save], 点击后跳出窗口,勾选所要存入的内存编号,按[OK]即可存入。

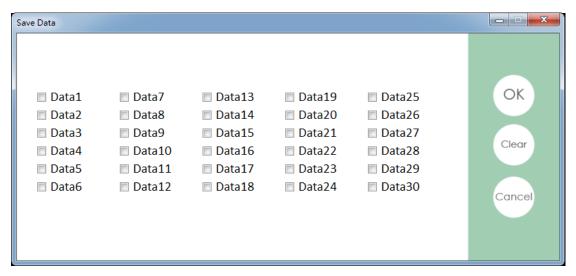


图 6.15 内存位置指令

例如,使用者已经在 XEG-W1 的[Expert]输入以下参数

[Direction]: 开

[Move stroke]: 10.00

[Move speed]: 10

[Gripping stroke]: 5.00

[Gripping speed]: 2

[Gripping force]: 40

在点选[Save]并选择[Data3]后,单击[OK],则该动作会被写入编号 3 的内存位置中。

● 对象辨识

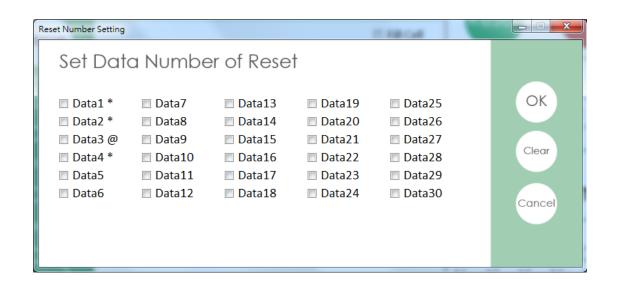
XEG 系列电动夹爪具有对象辨识功能,可在夹到物体时判别该物体的类型。使用者可点选侧边的[Check]来设定对象辨识参数,该参数具有 3 组,分别有上下限的对象宽度值。一旦夹持停止时,夹爪行程停留在设定范围内,即判断为该对象,输出讯号。当使用者设定好参数后,点选下方的 Save,将参数存入指定的动作内,没有存入参数的动作,即使夹到对象,也不会输出相对应讯号。

Object 1: 0.00 ~ 0.00 (mm)

Object 2: 0.00 ~ 0.00 (mm)

Object 3: 0.00 ~ 0.00 (mm)

设定对象辨识参数



● 初始化指定

XEG-C1 提供初始化动作指定功能,让用户在 I/O Port 较少的状况下,依然可以使用。如要设定夹爪初始化的动作编号,点选[Data Setting]的侧栏[Setup],并勾选指定的动作后,点选 OK。另外,*是表示运动的勾选项,@是代表者复归的选项。复归的动作是可以盖掉运动的动作,但是运动的动作无法盖掉复归的动作。

如果要取消已设定的复归动作,点开[Setup]后,不要勾选该动作编号即可。

不要勾选编号即可取消

5.4 自动操作

自动操作页面能让使用者排定序列,使夹爪自动执行已写入内存的动作。该页面提供动作执行与等待指令,透过适当组合,可实现复杂的自动化程序,如果用户计划用 I/O 的方式控制夹爪动作,自动操作页面也能让用户测试动作流程是否无误。在设定方面,可选择要执行的动作数目与循环重复次数。本节中将说明自动

操作页面的设定方式。

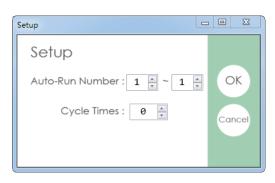
Log in	Da	ata Settir	ng	Aut	o-run	Da	ata table
NO.	Motion Type	e Mot	ion	NO.	Mo	otion Type	Motion
1		▼[•	16		-	-
2		-	-	17		-	-
3		-	•	18		-	-
4		-	•	19		-	-
5		▼[-	20			•
6		▼[-	21			-
7		▼[22			-
8		▼[23			-
9		-		24			-
10		-	-	25		-	-
11		▼[-	26			-
12		-	-	27			-
13		▼[28			-
14		▼[29			-
15		▼	•	30		-	•
Total Cycle Counts Total Cycle Time 0 0D 0H 0m 0s			Setu	up I	Run	Stop	Clear


自动操作分页

● 自动执行数据设定

[Auto-run]页面主体为动作列表,列表第一栏为[NO.],代表动作执行的编号,动作将依序执行,例如,当编号 1 的动作执行完毕后,执行编号 2 的动作,以此类推,直到执行完毕,编号共有 30 个,因此使用者最多可输入 30 个动作。

列表的第二栏为[Motion Type],动作型态分为两种,[Motion]代表执行已写入内存的动作,[Delay]代表停留在目前位置Ⅰ段时间;列表第三栏为[Motion],表示动作内容,当第二栏为[Motion]时,第三栏用来选取内存内的动作,当第二栏为[Delay]时,第三栏用来选取延迟的时间。例如,内存[Data1]的动作为开 1.00(mm),[Data2]的动作为关 1.00(mm),则当编号 1、2、3 分别为[Motion]→[Data1]、[Delay]→[10ms]、[Motion]→[Data2]时,夹爪将会先开 1.00(mm),等待 10ms 后,再关 1.00(mm)。



自动操作动作列表

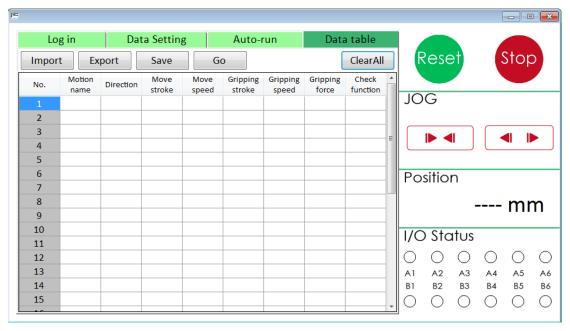
● 进阶设定

[Auto-run]页面下方的[Setup]让使用者可设定执行编号与重复执行次数。[Auto-Run Number] 代表单次循环中,执行的动作编号;下方的[Cycle Times]代表动作循环的数量,如果设为 0,表示无限循环。

进阶设定

● 执行自动操作

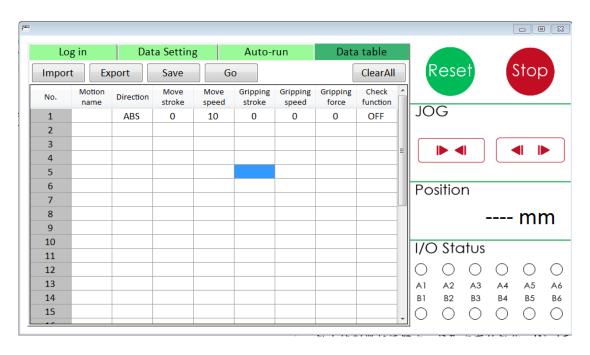
当使用者设定好动作后,单击页面下方的[Run]即可开始依设定执行列表动作; 反之,若要清除所有动作列表,则单击[Clear]。自动操作中,单击[Stop],会让夹 爪立刻停止目前动作,当使用者再次单击[执行自动操作],动作将从头开始。



自动操作按键

[Auto-run]页面左下角有[Total Cycle Counts]与[Total Cycle Time], [Total Cycle Counts]代表动作循环执行次数;而[Total Cycle Time]代表自开始后运行的总时间。

5.5 数据表


数据表

[Data table]分页提供使用者读取目前的动作设定,当切换到此分页时,程序会自动由控制器内存中,读取内存的动作。[No.]表示动作的编号; [Motion Name]表示动作的名称; [Direction]表示动作的方向; [Move stroke]表示动作的移动行程或位置; [Move speed]表示动作的移动速度; [Gripping stroke]表示动作的夹持行程; [Gripping speed]表示动作的夹持速度; [Gripping force]表示动作的夹持力; [Check function]表示动作是否有开启对象辨识的功能。若该编号有写入动作,就会显示于[Data table]的画面上。

若使用者对某编号要写入动作的名称,XEG-W1 版本 1.0.8 之后可以做加入,每个动作的名称长度最多为 8 个字符。

若要汇入目前设定资料,请点选[Import];若要导出目前设定资料,请点选[Export]及[Save];若要将所汇入的名称写入控制器中,请点选[Save];若要导出清除所有设定数据至控制器,请点选[ClearAll]及[Save]。

No.1 有写入动作的数据表

附录一: 快速上手流程

本附录提供给无暇研究技术手册的使用者。透过附录中的流程,用户能快速操作电动夹爪,适合自动化现场应用。当然,本附录仅提供简单范例,如果用户有超出本附录设定条件的应用,可在本附录流程的基础上,阅读相关章节修改参数,以便达成最佳效果。

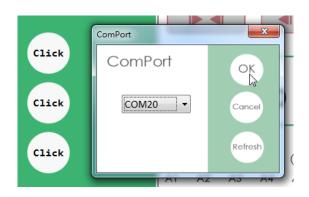
● 使用条件

依本附录操作前,使用者需确认以下条件是否满足。如未满足,请依技术手册相 关章节设置参数。

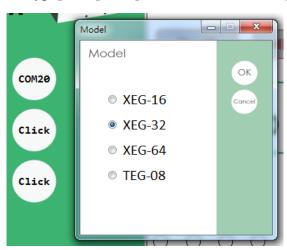
- ☑ 己满足系统需求(参阅 P.1)。
- ☑ 已安装[XEG-W1]人机接口软件。
- ☑ 已连结电动夹爪、控制器、个人计算机间的线路。

● 使用范例

设一电动夹爪使用情境为:


- ▶ 夹持物宽度为 15.00(mm)
- ▶ 需求动作两个,一为移动开(绝对位置 20mm)及一夹持关(相对行程 7mm)。
- ▶ 用于向内夹持物体。

则依照底下的操作流程,即可完成设定。


▶ 操作流程

1. 开始程序,点选[Setting COM Port]旁的[Click],选择使用的端口并按[OK]。

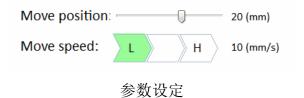

选择端口

2. 点选[Select Model Type]旁的[Click],选择夹爪型号并按[OK]。

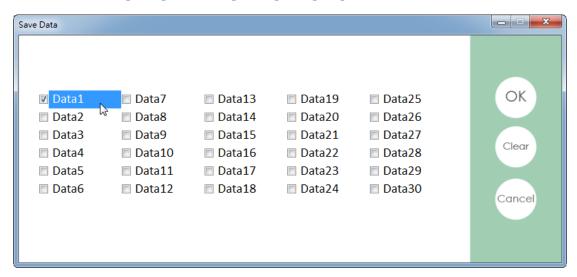
选择夹爪型号

3. 点选[Connect]旁的[Click], 再点选[Yes]。

联机启动

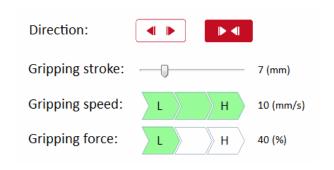


4. 点选 Reset 窗口上的[Yes]。

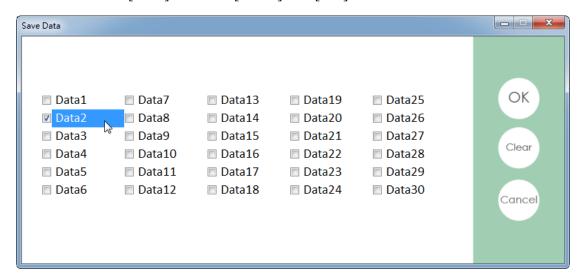


RESET 窗口

5. 先设定张开的动作参数,切换分页到[Data Setting], [Move stroke]拉到 [20]; [Move speed]选[L],代表 10mm/s。


6. 点选下方的[Save],再勾选[Data1],按[OK]。

选择内存位置



7. 接着设定夹持的动作参数,点选侧栏的[Grip],[Direction]选[闭合]; [Gripping stroke]输入拉到 7; [Gripping speed]设[H],表示 10(mm/s); [Gripping force] 设[L],表示 40(%)。

参数设定

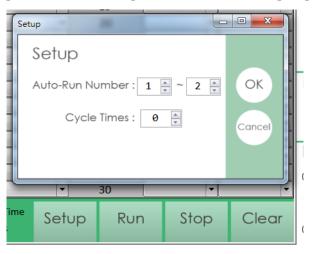
8. 点选下方的[Save],再勾选[Data2],按[OK]。

选择内存位置

9. 切换[Auto-run]页面。

切换页面

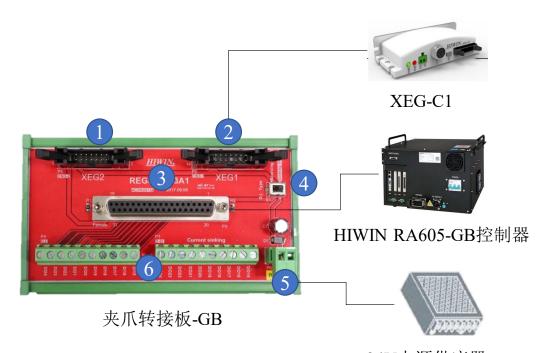
10. [NO.]1 的[Motion Type]选[Motion], [Motion]选[Data1]。


设定动作内容

11. [NO.]2 的[Motion Type]选[Motion],[Motion]选[Data2]。

设定动作内容

12. 点选[Setup], [Auto-Run Number]设为1到2,并点选[OK]。


设定运行的动作

13. 点选[Run],此时,夹爪依照先前的设定,不断重复动作。

附录二:接线范例

以 HIWIN 的机械手臂控制器 RCA605-GB 为例,目前提供透过 USB 通讯与输入/输出两种方式控制 XEG 电动夹爪。本附录教导客户在输入/输出控制时的接线与控制脚位,建议使用者使用夹爪转接板-GB,省去输入/输出电路接线之不便,如下图为夹爪与控制器之接线关系。

24V电源供应器

夹爪转接板-GB 接线

夹爪转接板-GB 提供使用者一次控制两组电动夹爪,接线介绍如下:

- 1. 通道 XEG1-连接至电爪控制器 XEG-C1
- 2. 通道 XEG2-连接至电爪控制器 XEG-C1
- 3. D-SUB-连接至 HIWIN RA605-GB 控制器输入/输出(本附录后有 RCA605-GB 控器输入/输出脚位)
- 4. 切换开关一切换 XEG-C1 输出型态
- 5. 输入电源一连接至电源供应器(MAX. 500mA)
- 6. 其他输入输出一连接至电爪以外输入输出控制设备

若客户有选配如下电爪转接板-GB,可参考下表 DIO 脚位进行控制电爪,若客户无选配该转接板,则须参考下表 D-SUB 自主进行接线,完成接线后,按照 DIO 脚位进行控制。

(N 代表 NPN, P 代表 PNP)

	XEG-C1 夹爪转接板-GB RCA605-GB							
编号 颜色 功能		DIO		D-SUB		备注		
細石	编号 颜色	功能	XEG1	XEG2	XEG1	XEG2		
A1	黑	IN0	DO9	DO15	21	27	_	
A2	红	IN1	DO10	DO16	22	28	_	
A3	黄	IN2	DO11	DO17	23	29	_	
A4	蓝	IN3	DO12	DO18	24	30	_	
A5	灰	IN4	DO13	DO19	25	31	_	
A6	浅蓝	START	DO14	DO20	26	32	_	
A7	棕/黑	COM+	_	_	_	_	XEG-C1:	
A/	小小 杰	COM		_			24V(限定 N)	
B1	棕	BUSY	DI9	DI15	2	8	_	
B2	橙	HOLD	DI10	DI16	3	9	_	
В3	绿	ALM1	DI11	DI17	4	10	_	
B4	紫	ALM2	DI12	DI18	5	11	_	
B5	白	CHK1	DI13	DI19	6	12	_	
В6	浅绿	CHK2	DI14	DI20	7	13	_	
	白/黑	黑 COM-	_	_	18	18	XEG-C1 DO COM:	
В7							0V(N), 24V(P)	
							IPC DI COM:	
							24V(N),0V(P)	
		_	_	_	37	37	D-SUB 电源: 24V	
_	_	_	_	_	19	19	D-SUB 电源: 0V	

附录三: 机械手臂语言范例

因末端效应器多应用于机械手臂,本处提供基本功能的机械手臂语言范例以供 参考。

机械手臂型号: HIWIN RA605-GB 机械手臂控制程式: HRSS 3.2.7

假设已将动作写入 XEG-C1, 且对应的 Digital I/O 如下表示

▶ Data1: 夹爪重置(刚上电时必须重置至少一次)

➤ Data2: 夹爪打开

▶ Data3: 夹爪向内夹持

• Digital Output (DO):

■ DO[9]: IN1 控制输出一

■ DO[10]: IN2 控制输出二

■ DO[14]: START 触发动作

• Digital Input (DI):

■ DI[9]: BUSY

■ DI[10]: HOLD

若要夹爪依序进行如下动作

- ▶ 夹爪重置(刚上电时必须重置至少一次)
- ▶ 夹爪打开
- ▶ 机械手臂移动到 P1
- ▶ 夹爪夹持
- ▶ 机械手臂依照夹持状况移动到 P2 或 P3

则可参照底下的机械手臂语言

1.	;Reset XEG
2.	DO[9] = TRUE; Select the reset action
3.	WAIT SEC 0.03
4.	\$DO[14] = TRUE ; Send start signal
5.	WAIT FOR \$DI[9] == TRUE ; Wait for action starting
6.	\$DO[9] = FALSE ; Clear I/O
7.	DO[14] = FALSE;


```
8.
        WAIT FOR DI[9] == FALSE
                                     ; Wait for action completion
9.
10.
        ;Open
11.
        DO[10] = TRUE
                                ; Select the open action
12.
        WAIT SEC 0.03
13.
                                 ; Send start signal
        DO[14] = TRUE
        WAIT FOR DI[9] = TRUE
14.
                                       ; Wait for action starting
15.
        DO[10] = FALSE
                                 ; Clear I/O
16.
        DO[14] = FALSE
17.
        WAIT FOR $DI[9] == FALSE ; Wait for action completion
18.
19.
        ;Move to P1
20.
        PTP P1 CONT Vel=100% Acc=50% TOOL[0] BASE[0] \\ Move robot
21.
22.
        ;Grip
23.
        DO[9] = TRUE
                                    ; Select the close action
24.
                                     ; Select the close action
        DO[10] = TRUE
25.
        WAIT SEC 0.03
26.
        DO[14] = TRUE
                                     ; Send start signal
27.
        WAIT FOR DI[9] == TRUE
                                           ; Wait for action starting
                                    ; Clear I/O
28.
        DO[9] = FALSE
29.
                                     ; Clear I/O
        DO[10] = FALSE
30.
        DO[14] = FALSE
31.
        WAIT FOR DI[9] == FALSE
                                           ; Wait for action completion
32.
        IF (\$DI[10] == TRUE) THEN
                                           ; Check gripping is success or not
33.
                 PTP P2 CONT Vel=100% Acc=50% TOOL[0] BASE[0]
        ENDIF
34.
33.
        IF (\$DI[10] == FALSE) THEN
                                            ; Same with Line 21
34.
                 PTP P3 CONT Vel=100% Acc=50% TOOL[0] BASE[0]
35.
        ENDIF
```


附录四: 故障排除手册

项目	问题描述	可能原因	处理办法
001-1		连接埠错误	使用装置管理员查询连接埠
001-2		安装驱动程式中	等待安装完成,或改为手动安装
无法连线 001-3	无法连线	电源 24V 或 USB 上电时,输入端 START 为 ON,误进入更新模式	请确认输入 Start 为 OFF,并把 24V 与 USB 电源皆重新上电,即可进入一般动作模式
002-1		没接电源	确认 XEG-C1 的 24V 电源
002-2		没接夹爪	确认夹爪与控制器的连接
002-3	无法 Reset	控制器汇入错误 Data	检查人机介面 Data table 资料正确性
002-4	(无动作)	电源电流不足	确认电源输入端规格
002-5		编码器异常	连络并送回原厂处理
002-6		马达驱控线磨损	换线后重新测试
003-1	Reset 后异常	选择型号与实际不符合	选择正确夹爪型号
003-2	Reset 后开吊 (有动作)	未移除行程中的工件	检查行程中已无任何异物
003-3		指部设计干涉行程	修改指部设计
004-1	Reset 后	超过电爪行程	确认电爪当下行程指令
004-2	其他命令没反应 (无动作)	电源电流不足	确认电源输入端规格
004-3		编码器异常	连络并送回原厂处理
004-4		马达驱控线磨损	换线后重新测试
005-1	动作异常 (有动作)	电源电流不足	确认电源输入端规格
005-2		润滑不足	加润滑油保养
005-3	(H4)(IF)	移动模式中有异物干涉	排除异物
006-1	Grip 动作后未触 发 Hold 讯号	目标物不在夹持范围内	确认夹持行程范围内目标

电动夹爪软件操作手册

出版日期:2019年03月

- 1. HIWIN为上銀科技的注册商标,请勿购买来路不明之仿冒品以维护您的权益。
- 2. 本型录所载规格、照片有时会与实际产品有所差异,包括因为改良而导致外观或规格等发生变化的情况。
- 3. 凡受"贸易法"等法规限制之相关技术与产品,HIWIN将不会违规擅自出售。若要出口HIWIN受法律规范限制出口的产品,应根据相关法律向主管机关申请出口许可,并不得供作生产或发展核子、生化、飞弹等军事武器之用。
- 4. HIWIN产品专利清单查询网址:http://www.hiwin.tw/Products/Products_patents.aspx

全球子公司 / 研发中心

上銀科技(中国)有限公司

HIWIN TECHNOLOGIES (CHINA) CORP. 江苏省苏州市苏州工业园区夏庄路2号

Tel: (0512) 8068-5599 Fax: (0512) 8068-9858 www.hiwin.cn bussiness@hiwin.cn

德国 欧芬堡

HIWIN GmbH OFFENBURG, GERMANY www.hiwin.de

日本 神戸・东京・名古屋・长野・ 东北・静冈・北陆・广岛・福冈・熊本

HIWIN JAPAN KOBE · TOKYO · NAGOYA · NAGANO · TOHOKU · SHIZUOKA · HOKURIKU · HIROSHIMA · FUKUOKA · KUMAMOTO, JAPAN www.hiwin.co.jp

美国 芝加哥

HIWIN USA CHICAGO, U.S.A. www.hiwin.com

意大利 米兰

HIWIN Srl BRUGHERIO, ITALY www.hiwin.it

瑞士 优纳

HIWIN Schweiz GmbH JONA, SWITZERLAND www.hiwin.ch

新加坡

HIWIN SINGAPORE SINGAPORE www.hiwin.sg

韩国 水原・马山

HIWIN KOREA SUWON · MASAN, KOREA www.hiwin.kr

捷克 布尔诺

HIWIN s.r.o. BRNO, CZECH REPUBLIC www.hiwin.cz

以色列 海法

Mega-Fabs Motion Systems, Ltd. HAĬFA, ISRAEL www.mega-fabs.com

全球营运总部

上銀科技股份有限公司

HIWIN TECHNOLOGIES CORP.

台湾40852台中市精密机械园区精科路7号 Tel: +886-4-23594510

Fax: +886-4-23594420 www.hiwin.tw business@hiwin.tw